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Entropy-driven demixing in spherocylinder binary mixtures
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The stability of binary fluid mixtures, with respect to a demixing transition, is examined within the frame-
work of the geometrical approximation of the direct correlation for hard nonspherical particles. In this theory,
the direct correlation function is essentially written in terms of the geometrical properties of the individual
molecules, and those of the overlap region between two different molecules, taken at fixed separation and
orientations. Within the present theory, the demixing spinodal line in the (r1 ,r2) concentration plane is
obtained analytically, and shown to be a quadratic function of the total packing fraction and the compositions.
The theory is applied herein to binary mixtures of hard spherocylinders in the isotropic phase. Isotropic
fluid-fluid demixing can be predicted for a large variety of sizes and aspect ratios, and the necessary condition
for entropic demixing is a sufficiently large thickness difference between the two particles that belong to each
of the fluids in the mixture. As the theory reduces exactly to the Percus-Yevick approximation for a hard sphere
mixture, accordingly it will not predict fluid-fluid demixing for this particular case. Demixing is also forbidden
in two other cases; for a mixture of spherocylinders and small spheres, and for mixtures of equally thin
spherocylinders. The influence and competition of an ordering instability on the demixing is also examined.
The ordering of a fluid will always be displaced toward higher packing fractions by the addition of a nonor-
dering fluid, and in some cases the entropic demixing can dominate the entire fluid range. Although the present
theory merges exactly with the correct Onsager limit, it is shown that, for intermediate cases, the results can be
significantly different from predictions of Onsager type approaches. These discrepancies are analyzed in
particular for the needle plus spherocylinder mixture. Finally, in view of the nature of the theory, it is
conjectured that the predicted demixing densities values are rather upper bounds to what should be expected.
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I. INTRODUCTION

The entropy driven phase transition in hard core mole
lar fluids has been a well established phenomenon since
pioneering work of Onsager@1#, who showed that an
isotropic-nematic phase transition could occur in a fluid
infinitely long spherocylinder like shaped molecules, induc
solely by excluded volume effects. One would then be na
rally led to ask whether entropy driven isotropic phase se
ration in hard core fluids could also occur under appropr
conditions. However, one of the major analytical theories
liquid state physics, the Percus-Yevick theory, outruled s
phase separation for additive hard sphere mixtures@2#. About
a decade ago, Biben and Hansen@3# showed that closure
relations more elaborate than the Percus-Yevick approxi
tion, could in principle predict such a phase separation
hard sphere mixtures when the size ratio exceeds 4. H
ever, they found that the predicted spinodals depend seve
on the closure relation. For example, for a size ratio 5 an
packing fraction of the small spheres ofhS50.4, the hyper-
netted chain approximation predicts phase separation
large sphere packing fractionhL50.124 @4#; however, the
more accurate Rogers-Young closure predicts a larger v
of hL'0.32 @3#, and surprisingly, another accurate closu
the Ballone-Pastore-Galli-Gazzillo~BPGG! closure, predicts
no phase separation@3# in this case. Nevertheless, their fin
ing opened a way to several investigations on the subj
mostly focused on hard spheres. More recent work cast s
doubt on whether such entropy driven phase separation
tually occurs in hard spheres mixtures in the fluid regio
1063-651X/2001/63~2!/021206~15!/$15.00 63 0212
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particularly for the large spheres. Computer simulations
meeting a real challenge on this ground, and to date no c
clusive results have been proven, although the general
sensus is that large spheres are more likely to form so
amorphous crystalline phase before the phase separatio
tually occurs@5,6#.

An alternative system that seems worth considering i
mixture of nonspherical hard core molecules. On this s
ject, however, almost nothing is known from integral equ
tions such as the Percus Yevick theory, although such
approximation has been shown to be solvable and relia
for pure fluids only. Here, one must rely solely on dens
functional theories, and eventually on computer simulatio
Among all the convex bodies, spherocylinders have a pl
of choice, as they have been abundantly studied by comp
simulations. When compared with hard ellipsoids, they fo
a more realistic class of model for liquid crystals, as they c
exhibit smectic phases, in addition to nematic phases.
entire phase diagram for a single spherocylinder fluid w
recently mapped by computer simulations@7#. This type of
fluid was also studied by integral equations techniques@8#.

For mixtures, Dijkstra and van Roij calculated the pha
diagram of needles mixed with spherocylinders@6#, and pre-
dicted that phase separation does occur, in rather close a
ment with Onsager type density functional theories based
simplified second virial coefficients. On the theoretical sid
most approaches have been based on second virial co
cient approximations of the Helmholtz free energy@9–11#.
Such approximations merge with the Onsager theory@1#,
which is valid in the limit of low density and elongated pa
ticles. In principle, one could envisage a rescaled appro
©2001 The American Physical Society06-1
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HADRIEN BOSETTI AND AURÉLIEN PERERA PHYSICAL REVIEW E63 021206
of such an approximation where, while the excluded volu
would be limited to the second virial coefficient, the dens
effects could be considered at the level of the Percus-Ye
theory. Indeed, such approaches have already been use
quite accurately predicting the entropy driven isotrop
nematic phase transition in hard core fluids@12#, and could,
in principle, be extended to the case of mixtures. Howeve
would be more desirable to have an approximate the
which goes beyond both the Percus-Yevick and the Ons
approaches. The only case where this goal have been ap
successfully is the hard cubes mixtures@13#. The theoretical
predictions were compared with lattice simulations@14# both
of which predict phase separation in these toy fluid mod

In the present work, we would like to consider the pro
lem of entropy driven phase separation in the light of
geometrical approximation for the direct correlation functi
~GADCF! that was proposed earlier@15#. The direct correla-
tion function ~DCF! plays a fundamental role in theories
liquids, mainly through the Ornstein-Zernike equation. T
is theoretically more appealing than the pair correlation fu
tion, because it has the same range as the pair interac
and, in particular, remains short ranged at the critical po
For hard core particles, this range is strictly limited to t
spatial region where two particles overlap. The major dra
back, however, is that the DCF is not a measurable quan
as opposed to the pair correlation function. This is quit
severe handicap when considering computer simulatio
The GADCF gives a physical grasp to this quantity by p
tulating that the DCF of any fluid of hard particles can
expressed in terms of the geometrical overlap between
molecules, with all the density dependence appearing onl
form of prefactors. Such a formulation is particularly conv
nient for mixtures, as the only requirement is a knowledge
the geometrical properties of individual constituents. T
GADCF has been tested for single fluids of a variety of co
vex bodies, such as ellipsoids and spherocylinders@15# and
cutspheres@16#, and has been extended to nonconvex bod
such as hard sphere chains@17#. It has been quite successf
in predicting the pressures, structure, and orientational p
erties of this type of fluids, both in three and two dimensio
@18#. The GADCF has two interesting properties. First,
reduces exactly to the Percus-Yevick~PY! approximation for
hard spheres. Second, in the low density limit, it reduces
the Mayer function, and hence is reduced to the Onsa
theory for very elongated particles. In view of the first pro
erty, it is not obvious at all that the GADCF should be suit
to study entropic phase separation, since the PY theory d
not predict entropic demixing. However, because it is able
predict the orientational instability of liquid crystals, i
rather good agreement with the hypernetted chain~HNC!
approximation, as opposed to the PY approximation, on
led to believe that the GADCF may incorporate a better
scription of the excluded volume effects.

The remainder of this paper is divided as follows. In S
II we will first expose the general theoretical frame for co
relation functions of nonspherical molecules, and particula
the relation to the demixing spinodal. The GADCF is th
introduced explicitly for mixtures, and we show that the d
mixing spinodal can be cast in a simple analytical form.
02120
e

k
for

-

it
ry
er
ied

.
-
e

-
n,

t.

-
y,
a
s.
-

he
in
-
f

e
-

s

p-
s
t

to
er
-

es
o

is
-

.

y

-

Sec. III, we consider several particular cases of mixtures,
compare the GADCF with Onsager type approaches
available computer experiments. In Sec. IV we give our c
clusions and future expectations about the GADCF for m
tures.

II. THEORY

We consider a binary mixture of hard core convex bod
in the isotropic fluid phase. The theory below is independ
of any particular choice for the convex bodies. In Sec. III, w
will explicitly consider spherocylindrical molecules.

The partial number densities are notedr1 and r2 (r i
5Ni /V), and the total density isr5r11r2. The fraction~or
composition! of each specie is defined byxa5ra /r, and the
packing fraction is defined asha5raVa (a51 and 2!,
whereVa is the volume of the molecule of speciea. Being a
convex body, each molecule of of the fluid componenta is
then entirely defined by the three geometrical properties
sociated with its shape, which are the volumeVa , the sur-
faceSa , and the mean radiusRma . We will further restrict
the symmetry of the molecule to uniaxial, such that the o
entation of any moleculei is specified by the unit vectorûi
with angles (u i ,f i) in the lab fixed frame. The structura
properties of the mixture can be described by the partial p
distribution functionsgab(12) and the partial pair direct cor
relationscab(12), where (1,2) stands for (rW12,û1 ,û2), and
rW12 is the vector connecting the centers of mass of the
molecules 1 and 2, belonging to speciesa and b, respec-
tively. For nonspherical molecules, these correlation fu
tions can be conveniently expanded in the isotropic phas
appropriate basis which accounts for the symmetry of
phase,

tab~12!5(
mnl

tab
mnl~r !Fmnl~ r̂ ,û1 ,û2!, ~1a!

wheret(12) can be either ofc(12) or g(12). The rotational
invariantFmnl is expressed in terms of spherical harmon
and carries all the information on the vector part of the pro
erty tab(12), while the expansion coefficientstab

mn(r ) contain
only the radial dependence. Below we recall the express
of the rotational invariants for the isotropic phase@19#,
which are independent of the specie specifications (a,b),
and which are written in terms the generalized spherical h
monicsRm0

m (û) and the 32 j symbols as

Fmnl~12!5 f mnl(
mnl

S m n l

m n l
DRm0

m ~ û1!Rn0
n ~ û2!Rl0

l ~ r̂ !.

~1b!

We will consider the so called ‘‘Blum choice’’ for the coef
ficient f mnl5A(2m11)(2n11) which is consistent with a
convenient matricial rearrangement of the Ornstein-Zern
equation@19,20#.

The theoretical goal is then to accurately compu
tab
mnl(r )’s. Some of thetab

mnl(r )’s are particularly meaningful.
For example, it can shown be thattab

000(r ), which is the angle
average oftab(12), can be related to thermodynamic pro
6-2
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ENTROPY-DRIVEN DEMIXING IN SPHEROCYLINDER . . . PHYSICAL REVIEW E 63 021206
erties such as the pressure of the isothermal compressib
whereastab

110 is related to the dielectric constant@21# andtab
220

can be related to the orientational stability of the fluid@22#.
Usually, these coefficients are computed within the integ
equation formalism, with a great deal of numerical effo
The geometrical approximation of the direct correlati
function @15#, that we shall recall below, allows a much sim
plified route to compute any of thecab

mnl(r ) independently of
the other(mnl) values, and with minimal numerical effort
Fortunately, for our concern here, we need not compute
entire r dependence of such expansion coefficients, and
shall see that a knowledge of the zero moment of the Fou
transform of these functionsc̃ab

mnl(k50) will be sufficient to
gather sufficient information on the location of the fluid-flu
phase separation spinodal line.

A. Density correlations and spinodals

Statistical mechanics relates the convexity of the free
ergy to the mechanical stability of the phase, which is th
delimited by a spinodal line. As this line is approached, la
concentration fluctuations will occur, rendering the act
phase instable. The correlation range of these fluctuation
directly related to the long range behavior of density cor
lation functions gab(12), or equivalently hab(12)
5gab(12)21. The approach of the spinodal~or phase
boundary! line can be then monitored through thek→0 be-
havior of the Fourier transforms of these functionsh̃ab(12),
which diverge exactly at the spinodal line (k is the inverse
wavelength!. There are two ways one can seek for the sp
odal. One possible way is to look at the relation between
thermodynamical variables that control the stability of t
phase and the microscopic correlations that are relate
them. For example, the convexity of the Gibbs free ene
per particleG/N is related to the partial structure facto
Ŝab(k)5Axaxb@dab1Axaxbh̃ab

000(k)# through the relation
@23,24#

S ]2G/~NkBT!

]x1
2 D

N,P,T

5
1

lim
k→0

@x1
2Ŝ22~k!1x2

2Ŝ11~k!22x1x2Ŝ12~k!#
. ~2!

The divergence ofŜab(k→0) will then signal the enhance
ment in concentration fluctuation and the change in curva
~loss of convexity! in G. Alternatively, the spinodal line can
be detected directly through the Ornstein-Zernike~OZ! equa-
tion at k50. In the Fourier space, this equation reads@21#

h̃ab~12!5 c̃ab~12!1
1

4p (
g

rgE dû3h̃ag~13!c̃gb~32!,

~3!

where (12) stands now for (kW ,û1 ,û2). Upon expansion of the
functions in rotational invariants, and carrying out the ang
lar integral, the OZ equation can be written solely in terms
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the Fourier-Hankel transforms of the expansion coefficie
h̃ab

mnl(k) and c̃ab
mnl(k), which are defined by

h̃ab
mnl~k!54p~21! lE

0

`

drr 2hab
mnl~r ! j l~kr !, ~4!

where j l(x) is the spherical Bessel function of orderl. A
similar definition also holds for the transform of the DCF

As we are interested in thek50 limit, using the math-
ematical property of the Bessel function, lim

x→0
j l(x)'xl ,

we see from Eq.~4! that, if the expansion coefficient
hab

mnl(r ) are well behaved short range functions, then only
l 50 terms will remain in thek50 limit. This applies for any
thermodynamic state that is not on the spinodal line. In
k50 limit, the OZ equation decouples nicely into the follow
ing form:

h̃ab
mm0~0!5 c̃ab

mm0~0!1
1

A2m11
(
g

rgh̃ag
mm0~0!c̃gb

mm0~0!.

~5!

This equation can be further cast into a matricial form
introducing the matricesH̃m and C̃m , whose elements are
defined by

H̃ab
(m)5Ararb

h̃ab
mm0~0!

A2m11
,

~6!

C̃ab
(m)5Ararb

c̃ab
mm0~0!

A2m11
.

Then, the OZ equation in thek50 limit is simply a matricial
product:

~ I1H̃m!~ I2C̃m!5I . ~7!

It can be seen that, form50, the first matrix in the prod-
uct above is simply related to the matrix of the partial stru
ture factors that appear in Eq.~2! by the following expres-
sion

Ŝab~k50!5Axaxb~dab1H̃ab
(0)!. ~8!

Equation~7! allows us to compare the phase separat
spinodal with that of the liquid-vapor spinodal for a pu
fluid. In the latter case, the OZ relation can be written

@11rh̃(0)#@12r c̃(0)#51, in terms of the correlation func
tions of the simple fluid. As the spinodal line is approach
h̃(0) will tend to diverge, due to the building of long rang
density correlations inh(r ). But the direct correlation func-
tion remains finite, even at the critical point; thus the dive
gence ofh̃(0) can be monitored by the limit 12r c̃(0)→0.
In the case of a mixture, we see that the condition

det~ I2C̃m!50 ~9!
6-3
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HADRIEN BOSETTI AND AURÉLIEN PERERA PHYSICAL REVIEW E63 021206
can be considered as the alternative definition of the s
odal. This is the definition that we will be using througho
this work. It is important to see that the matrix elementsC̃ab

(m)

remain finite on the spinodal line, and that any divergence
H̃ab

(m) will appear in Eq.~7! through the condition in Eq.~9!.
We see that Eq.~9! also contains information about th

orientational spinodal, as opposed to the case of sphe
particles fluid mixture. Indeed, condition~9! can be also sat
isfied for mÞ0. Hence there can be competition between
isotropic spinodal~like a disordered phase separation! and
the appearance of an orientational spinodal formÞ0. In par-
ticular, the orientational spinodal for isotropic-nematic tra
sition occurs form52 @22#.

The studies of phase separation based on Eq.~9!, which
are focussed on the stability of the mixture, are quite diff
ent in spirit from those based on approximations of the f
energy, which need no reference to structural propert
They are also more demanding, as an accurate descriptio
these properties is a prerequisite.

In order to apply the above formalism to actual pha
separation, we need to compute the correlation functions
explicit cases. This can be achieved, for example, by inte
equation techniques for mixtures of nonspherical partic
However, it is quite a cumbersome route to obtain th
functions, as it is already quite numerically involved for t
single component case. Moreover, the integral equations
known to be less reliable close to the phase separation w
many body effects become more important.

One alternative route is the geometrical approximation
the direct correlation function which has been shown to
quite accurate in computing the thermodynamical proper
and the DCF for simple fluids in many cases@15,18#. The
general formalism was presented in Ref.@15#. We recall and
detail the theory in the present context, with explicit app
cation for binary mixtures.

B. Geometrical approximation of the direct correlation
function of mixtures

The pair direct correlation is approximated by the follo
ing expression, which involves the geometrical properties
the overlap region of two convex bodies:

cab~12!52xVDVab~12!2xSDSab~12!1x0Fab~12!,

~10!

whereDVab(12) is the volume of the overlap between mo
ecule 1 of speciea and molecule 2 of specieb, DSab(12)
is the surface of that overlap, andFab(12)
5exp@2fab(12)/(kBT)#21 is the Mayer function@fab(12)
is the interaction energy between the two molecules, wh
is simply in the present case infinity when two particles ov
lap and zero when they do not#. The coefficientsxV , xS ,
andx0 depend only on the partial densities and the geome
cal characteristics of the two molecules through the follo
ing parameters which are the elementary variables of
scaled particle theory~SPT! @2#,

h i5(
a

raj i
(a) , i 50, 1, 2, and 3, ~11!
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where the sum is carried over all the speciesa in the mix-
ture, and thej parameters are the fundamental measures
the SPT associated with the mean radius, the surface an
volume of each convex bodya, through the notationj0

51, j1
(a)5Rm;a , j2

(a)5Sa , andj3
(a)5Va .

The expressions for the coefficientsx in Eq. ~10! were
derived in Ref.@15# as combinations of second order part
derivatives of the SPT free energy density, and here we
call their explicit expressions:

xV5
h0

~12h3!2
1

2h1h2

~12h3!3
1

1

4p

h2
3

~12h3!4
,

xS5
h1

~12h3!2
1

1

4p

h2
2

~12h3!3
1

1

4p

gabh2

~12h3!2
, ~12!

x05
1

12h3
1gab

RmaRmb

Rma1Rmb

h2

~12h3!2
.

The coefficientsgab have been tailored in order that th
expression for the DCF gives the correct SPT isotherm
compressibility@15#. They also ensure that the DCF, as d
fined in Eq.~10!, reduces exactly to the PY expression f
hard spheres mixtures. We note that the last two coefficie
actually depend on the pair of molecules (a,b) through
these coefficients, which are given by

gab5

FRmaVb1RmbVa1
SaSb

4p G~Rma1Rmb!

SaVb1SbVa

4p
12RmaRmbB2;ab

, ~13!

whereB2;ab is the second virial coefficient associated wi
the pair (a,b). For convex bodies, there is simple a analy
cal expression for this coefficient@25#:

B2;ab5~Va1Vb1SaRmb1SbRma!/2. ~14!

Equations ~10!–~14! complete the prescription of th
GADCF.

The overlap volumes and surfaces can be written sim
as convolution products of the elementary weight functio
associated with the volume and surface of each convex b
@15#. Explicit analytical expressions for the expansion co
ficients of these terms were given in Ref.@15# for different
geometries. The Mayer functions expansion coefficients,
the other hand, must be calculated by a numerical comp
tion of the angular integrations, as outlined, for example,
Ref. @22#. For the present problem, however, we do not e
plicitly need expansion coefficients, but rather theirk50
values for the more important of them, namely, form50 and
for m52.

It is not difficult to realize that the angular average of t
overlap regions, when integrated over all separations lea
the simple combinations

DṼab
000~k50!5 K E drWDVab~12!L

û1 ,û2

5VaVb ,
~15a!
6-4



th
e

ht
is
n

l
th
x

en

an

d

in

in
s
e
th
co

fa
d

, i

in

x-
an

ns
his
ck-

ove

is
’’
ing
.

on,

ENTROPY-DRIVEN DEMIXING IN SPHEROCYLINDER . . . PHYSICAL REVIEW E 63 021206
DṼab
mnl~k50!50 ~m,n,l !Þ~0,0,0!,

DS̃ab
000~k50!5 K E drWDSab~12!L

û1 ,û2

5SaVb1SbVa ,

~15b!

DS̃ab
mnl~k50!50, ~m,n,l !Þ~0,0,0!.

These results can be rigorously derived from the fact that
overlap volume is the convolution of the individual volum
weights, and the fact that the overlap surface is the sum
the convolution of the individual volume and surface weig
for each pair of bodies@15#. The most remarkable feature
that neither expressions have anisotropic contributio
which is also intuitive.

For the Mayer functionFab(12), the angular and radia
average is quite simply the excluded volume between
two bodies, which is known analytically for any conve
body to be twice the corresponding second virial coeffici
@25#:

Fab
000~k50!522B2;ab . ~16!

There is also an anisotropic contribution to the Mayer exp
sion coefficients in thek50 limit. These terms are known
analytically for few convex bodies@25#. For spherocylinders
it can be expressed simply in terms of the spherical cap
ameters and the cylinder lengthL for each individual specie
as

Fab
2205

A5p

32
LaLb~sa1sb!. ~17!

@The factorA5 in expression above comes from the choice
Eq. ~1b! for f 220#.

We note that the anisotropy of the DCF for the GADCF
thek50 limit comes entirely from the Mayer function. Thu
k50 orientational contributions to the GADCF will b
treated at the second virial approximation, in the spirit of
Onsager type approach. However, we note here that this
tribution is rescaled by a density dependent termx0 which is
nontrivial. We note in particular thatx0 is not the PY hard
sphere compressibility term, which is often used as a pre
tor to the Mayer function, for example in effective liqui
type approximation such as SCELA@12#. The present ap-
proach predicts the orientational spinodal of simple fluids
close agreement with the HNC approximation@15#.

C. Explicit expressions for the demixing spinodal
for a two-component mixture

It turns out that inserting the GADCF expression given
Eq. ~10! into Eq. ~9!, together with the different terms from
Eqs. ~12!–~16!, the resulting calculation can be carried e
plicitly for a two component system. In this case the relev
partial DCF arec11(12), c12(12), andc22(12).

The determinant in Eq.~9! is then
02120
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S 12r1

c̃11
mm0~0!

A2m11
D S 12r2

c̃22
mm0~0!

A2m11
D 2r1r2

@ c̃12
mm0~0!#2

2m11

50. ~18!

For m50 one obtains very simple quadratic expressio
for the spinodal in terms of the partial density variables. T
spinodal can be written either as a function of the two pa
ing fractionsh1 andh2, or in terms of the variables (r,x2).
Other choices are possible, but we consider the ones ab
as particularly relevant to our presentation.

In the following notation, and for the remainder of th
paper we will implicitly consider specie 1 as the ‘‘solvent
and specie 2 as the ‘‘solute.’’ We then consider the demix
of the fluid when fluid 2 is added progressively to fluid 1

For the choice of variables (h2 ,h1) for Eq. ~18! and m
50, after some algebra we obtain the following expressi
which is symmetrical in both variables:

A22h2
21A11h1

21A12h1h21A2h21A1h11A050,
~19a!

where the coefficients are given by

Aaa5Vb
2~4pVa

21Sa
328pVaSaRma! a51,2 ~b52,1!

A125V1V2@S1S2~S11S2!18p~V12S1Rm1!~V22S2Rm2!

24p„~S1Rm2!21~S2Rm1!2
…#,

~19b!
Aa528VaVb

2p~Va2SaRma!, a51,2 ~b52,1!,

A0524pV1
2V2

2 .

For the other choice of variables (r,x2) we obtain

r2~B22x2
21B21x21B20!1r~B11x21B10!1B050,

~20a!

with the coefficients given by

B225~S11S2!~S12S2!214p~V12V2!218p~V12V2!

3~S2Rm22S1Rm1!14p~S1Rm22S2Rm1!2,

B215S1S2~S11S2!22S1
318pV1~V22V112S1Rm1

2S2Rm2!24p~S1Rm22S2Rm1!228pV2S1Rm1 ,

B2054pV1
21S1

328pV1S1Rm1 ,

B1158p~V12V22S1Rm11S2Rm2!,

B10528p~V12S1Rm1!,

B054p. ~20b!

From these expressions, one can solve trivially forh1 as a
function of h2, or equivalently forr as a function ofx2:
6-5
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h1~h2!5
2~A12h21A2!2A~A12h21A2!224A22~A11h1

21A1h11A0!

2A22
, ~21!

rS~x2!5
2~B11x21B10!2A~B11x21B10!

2216p~B22x2
21B21x21B20!

2~B22x2
21B21x21B20!

. ~22!
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These expressions are particularly interesting as they ca
inserted into the SPT pressure, which we recall is consis
with the DCF given in Eq.~10! @15#. This expression is
explicitly given by

P

kBT
5

h0

12h3
1

h1h2

~12h3!2
1

1

12p

h2
3

~12h3!3
. ~23!

From Eqs.~20! and ~21! one can then compute the pressu
along the spinodal line.

One can also compute the isothermal compressib
which for a two component system can be written in terms
the partial DCF as@21#

xT
0

xT
512r@x1

2c̃11
000~0!1x2

2c̃22
000~0!12x1x2c̃12

000~0!#,

~24!

wherexT
051/(rkBT) is related to the ideal gas compressib

ity. We note immediately that, unlike the single fluid case
which the divergence of the compressibility is associa
with the equivalent of Eq.~9! @that is, 12r c̃(0)50#, for
mixtures this is not necessarily the case. Indeed, for a
component system, the expression for the inverse of the
thermal compressibility is quite different from Eq.~18!.

It is possible to derive the expression for the SPT che
cal potentials from the thermodynamic identitym i5]f/]r i
( i 51, and 2), wheref is the SPT free energy density@2#.
However, it was shown in Ref.@15# that, while the SPT
pressure is consistent with Eq.~10!, in the sense that it can
be derived from direct integration of the compressibility, t
SPT free energy is not consistent with the GADCF, mai
due to the loss of information when arriving at express
~10!. Building a coexistence curve from the SPT free ene
will not necessarily be the same operation as building it fr
the DCF. More importantly, such a coexistence curve w
not necessarily coincide with the spinodal derived from
DCF at the critical consolute points. For these reasons,
will restrict ourselves here to the spinodal curve.

We briefly examine the case of an orientational spinod
Unfortunately, it is not possible to derive a simple express
for this spinodal condition whenm52 in Eq.~9!. The result-
ing expressions are still polynomials in partial densities,
of degree 6 in the density variables. Hence these express
are of no use for simple solutions such as Eqs.~21! and~22!.
We will solve these equations numerically in Sec. III.

We are now in position to study entropic phase separa
for particular cases. Before we do this, it is instructive
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compare our expressions to those derived in Onsager
approaches, where the DCF is reduced to the Mayer fu
tion.

D. Comparison with the Onsager limit

It is important to examine the Onsager limit, as almost
theoretical results on the the present topic are based on
type of approximation. In particular we wish to show expli
itly that the theory exposed in Sec. II C reduces to the O
sager limit. This limit is appropriate to study cases where
particles are ‘‘very’’ elongated, and subsequently restric
to the very low density region.

There are two levels of approximation in this type
theory. The first one consists of truncating the excess
energy at the second order in density, neglecting virial co
ficients higher than 2. This is strictly equivalent to reduci
the direct correlation function to the Mayer function@e.g.,
Eqs.~16! and ~17!# to which it is rigously equal in the zero
density ideal gas limit. From Eqs.~12!, we see that, taking
the low density limit, only the termx051 will remain asr
→0. Therefore, from Eq.~10!, we see that our expression
for the partial DCF satisfy this limit correctly. Most theorie
are based on this type of approximation, which seems
sonable when the density is very low,but not necessarily
when the particles are very elongated, unless we state ex
plicitly what is meant by that. In what follows, we will refe
to this level of approximation as the second virial coefficie
Onsager approximation~SVCOA!.

The second level of approximation is precisely to take
infinite limit of size ratio. Onsager did that for spherocylin
drical particles, of diameters and cylinder lengthL, and in
the limit L/s→` he neglected the spherical caps, retaini
in the second virial coefficient the first term remaining in th
limit. The essential purpose was to demonstrate that
cluded volume effects alone can drive an isotropic to nem
transition, and that was a pioneering breakthrough@1#. We
will refer to such an approximation as a full Onsager a
proximation~FOA!.

When coming to mixtures, we realize that, unless we ta
both components to be extremely elongated, this limit
quite unrealistic, at least for the smallest component. In S
III we will examine the particular case of a needle and r
mixture, for various rod sizes, and we will show that the
can be large differences between the two limits. Clearly,
this second case is only a limiting case of the second vi
approximation, our theory is also able to correctly reprodu
this limit.

The pressure in the Onsager approximation is given b
second order expansion in density, similarly to the free
6-6
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ergy, and is simply written in terms of the second vir
coefficients as

PO

kBT
5r1r2~x1

2B2;111x2
2B2;2212x1x2B2;12!. ~25!

For the FOA, the second virial coefficients are simply tak
in the L/s→` @10#.

Finally, there is one case that we would like to exam
closely, which is the demixing of hard spheres in the sec
virial approximation. We show in the Appendix that there
indeed a possibility for demixing hard spheres when the s
ratio exceeds 2.95. In view of computer simulation resu
that predict this demixing to occur~if it occurs at all! around
size ratios of 10, we can appreciate the level of approxim
tion that is made by retaining only second order terms in
free energy. As the PY theory contains the Mayer funct
exactly ~and hence the second virial!, one may ask how this
contribution is destroyed by the approximated higher or
terms. Furthermore, as the GADCF is built on the PY a
proximation, one may wonder why it is more appropriate
predicting orientational ordering instability. We believe th
this could be due to the fact that the overlap volume a
surface terms that are dominant@Eq. ~10!# do not contribute
to the anisotropic part of the DCF in thek50 limit. In this
limit, it is only the Mayer function that gives a nonvanishin
contribution. Consequently, the PY approximation must
corporate the density dependence of the prefactor int
Mayer function that is weaker thanx0.

III. RESULTS: ENTROPIC DEMIXING
IN SPHEROCYLINDERS MIXTURES

We now consider a two fluid mixture of spherocylinde
each specified by a diametersa and a cylinder lengthLa
(a51,2). For spherocylinders, the volume, surface, a
mean radius are given by@25#

Va5
p

12
~3La12sa!sa

2 ,

Sa5p~La1sa!sa , ~26!

Rma5
1

4
~L12sa!.

The second virial coefficients are then given by Eq.~14!.
The densities can be reduced by the cube of one of

diameters, which we choose arbitrarily to be that of speci
This is equivalent of takings1* 51. Therefore, in all that
follows, we choose specie 1, with the smallest diamete
the ‘‘solvent.’’ This choice of solvent and solute is arbitrar
and does not affect the generality of the discussion throu
out this section.

The reduced partial densities are then defined byra

5ras1
3, where the same notation has been used for the

duced variables in order to avoid notational burden. Si
larly, in what follows we also keep the notations2
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5s2 /s1 and La5La /s1. The volume, surface, and radiu
will also be reduced bys1

n , with n53, 2, and 1, respec
tively.

A. Comparative study of the pressures

In order to test the accuracy of the GADCF for mixture
it would have been nice to compare the structural data to
from another theoretical method~simulation or integral equa
tions!. As mentioned in Sec. II, such a comparison would
possible only if DCF’s were available from integral equ
tions techniques. This is not presently the case. Alternativ
one could indirectly test the accuracy of the DCF through
thermodynamical properties that can be derived from
namely, the pressure, and compare with computer simula
results. Although such data are not available for sphero
inder mixtures, there are some Monte Carlo pressure data
spheres and spherocylinder mixtures@25# for equal diameters
and cylinder lengthL51. Although this is a small anisot
ropy, it nevertheless allows one to examine the extent of
validity the geometrical approximation. The pressure cal
lated from Eq.~23! is shown in Fig. 1 together with the
Monte Carlo data for three different hard sphere densitiesr1.
We see that the agreement can be considered satisfyin
fact, it is quite similar to that obtained for single fluid sy
tems. For the latter case, the agreement was considered
remarkable even for elongation as large as 11 for rigid b
ies, and 200 for freely jointed chains@17#. For curiosity we

FIG. 1. The compressibility factors for mixtures of spherocyli
ders (s51 andL51) and hard spheres (s51) as a functions of
the total packing fractionh. The symbols are Monte Carlo resul
from Ref. @25#; the solid lines are for the SPT pressure@Eq. ~23!#
and the dotted lines for the Carnahan-Starling type approxima
@15#. The upper curves have been shifted by 5~10!. The topmost
data are for a hard sphere compositionx150.7143, the middle data
for x150.2, and the lowest data forx150.5. The dashed curve i
the second virial approximation@Eq. ~25!#.
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have added the truncated pressure from Eq.~25!, which is
clearly not an acceptable approximation in this case. Inde
Eq. ~25! gives a compressibility factorP/(rkBT) that is lin-
ear in density, and its validity is then restricted to very sm
packing fractions.

Now, in order to test the range of accuracy of Eq.~25!
versus that given by Eq.~23!, in Fig. 2 we consider two
different cases, where the second specie is treated a
SVCOA level. In Fig. 2~a! we consider an equimolar mixtur
of very elongated spherocylinders (L25100) in a spherical
solvent (L150) in one case, and in a liquid crystal solve
(L1510) in another case. The respective pressures
shown in Fig. 2~a! for several theories. We have also add
the Carnahan Starling pressure that can be defined thro
the SPT variables@15#, and can be seen to be indistinguis
able from that given by Eq.~23!. On the other hand, Eq.~25!
merges with the two others only for very small packing fra
tions h,0.002, which was to be expected.

In the second example,@Fig. 2~b!#, we consider a mixture
of colloidal TMV ~tobacco mosaic virus! in a typical liquid
crystal. This example is taken from Ref.@10# and the dimen-
sions of the two molecules are~the TMV is component 2!
s154.5 Å, L15600 Å, s25180 Å, and L253000 Å.
Reducing all units bys1, and keeping the same notation
with s51, we have nows2540, L15133.33, andL2
5666.67. In this case, we see that the second virial appr
mation does not compare very well with the SPT press
@Eq. ~23!#. We have also plotted a simplified version ofPO
where the second virial coefficients are further simplified
taking theL/s→` limit. The simplified virial coefficients
then becomeb2;ab5(p/4)LaLb(s11s2)/2. These expres
sions, and the associated pressures, were often used rec
@10,6#, and we see here that they might not be the best
proximations, as in this case they seem worse than the
second virial expression.

B. Entropic demixing and orientational spinodal

Entropic demixing can be located by using the Gibbs f
energy curvature criteria@Eq. ~2!#. This criteria can be writ-
ten in terms of the direct correlation functions, by using t
definition of the partial structure factors@Eq. ~8!# through the
OZ equation~7! and the compressibility equation~24!.

Following Biben and Hansen@3#, we define theL
5x1x2„]

2@G/(NkBT)#/]x1
2
…N,P,T , and rewrite this expres

sion by using Eqs.~2!, ~7!, ~8!, and~24! in the term

L5
xT

xT
0
det~ I2C̃0!. ~27!

As one approaches the demixing region, from Eq.~9! we see
that L from Eq. ~27! will decay to zero. This expression i
used in Fig. 3 to show the possibility of an entropic demixi
for several mixtures, where the packing fraction of speci
is fixed ath150.3, and that of specie 2 is varied between
and 0.4, values that are reasonably small packing fract
for a fluid. We recall that for a hard sphere the fluid regi
extends up toh50.49. In any case, it seems reasonable
keep the total packing fraction below 0.5 in order to ensur
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liquid phase. Different size and aspect ratios of the sphe
cylinders have been considered. We see that the gen
trend for demixing, at reasonable liquid type packing fra
tions, is that the thickness of the second specie must be l
and the cylinder lengths long. To be more specific, Fig
shows that fors25s1 demixing never occurs regardless

FIG. 2. ~a! The compressibility factor for an equimolar mixtur
of spherocylinders with the same diameters51. The solute cylin-
der length isL25100, and the solvent is a hard sphere: (L50,
bottom curve! and L510 ~top curve, data shifted by 5!. The line
symbols are as in Fig. 1.~b! The compressibility factor for a sphero
cylinder model of the mosaic tobacco virus (s2540 and L2

5666.67) in a model liquid crystal solvent (s151 and L1

5133.33). The line symbols are as in Fig. 1. The long dashes a
the full Onsager limit.
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the rod lengths. The topmost curve also reveals the Per
Yevick nature of the theory, signaling no demixing f
spheres with a size ratio as large as 10. This trend also
sists when the cylinders are short~second curve from the
top!. In order to see a turnover of theL curves, one must go
to large diameters and long cylinders. But this is not a n
essary condition, as indicated by the case withs255, but
with very long cylinders of lengthsL1560 andL2540. Al-
though the general trends can be seen from theL curves, we
cannot see properly how changing the densities of the
vent influences the solute. For a more global view, we m
display spinodal curves.

One feature that cannot be seen from Fig. 3 is that, if
cylinders become very long, then they will likely tend
form an ordered phase at large packing fractions. The co
tion for orientational instability is also given by Eq.~9!, or
alternatively Eq.~18!, but for m52. For spherocylinders
using Eq.~18! together with Eqs.~10!, ~15!, and ~17! gives
an analytical expression that cannot be further reduc
Therefore, we have solved for the zeros of this equation
terms of either variables (h1 ,h2) or (r,x2).

We now examine the different cases that can be relev
or not for entropic demixing. For this purpose, we exam
the quadratic form in Eq.~22!. We seek physical densit
solutions for this equation, asx5x2 varies between 0 and
~pure solvent and pure solute limits!. In general, in view of
Eqs.~20b! and~22!, it will not be possible to tell if there is a
demixing transition. Numerical investigation is necessa
But there are few cases where this can be done analytic

1. Spherical solvent or spherical solute

We first consider the pure hard spheres mixture, in wh
case we recall that our approximation gives exactly the

FIG. 3. The phase stability criteriaL related to the free-energ
convexity ~see text! for several spherocylinder mixtures, at a fixe
packing fraction of specie 1 (h150.3). The numbers in parenthes
are the dimensions of both species (s2 , L1, and L2) ~with the
conventions151).
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solution, thus leading to no demixing. In this case, we fi
that the quadratic equation@Eq. ~22!# gives the following
negativevalue for a possible demixing density as a functi
of the large spheres compositionx:

rS~x!5
23

p@11x~s221!#
. ~28!

This absurd result is clearly a consequence, and an illus
tion, of the inability of PY theory to predict phase separati
for hard spheres mixtures.

We now consider a spherical solvent (L150), when the
solute particles are spherocylinders with arbitrary dime
sions ~we recall here our convention thats151 always!.
This case that can be resolved from Eqs.~20b! and ~22!.
Direct inspection of the analytical result for Eq.~22! is not
very helpful. Instead, we look at the values ofrS for x50
andx51, which we find to both be negative:

rS~0!5
23

p
, rS~1!5

26

ps2
2~L21s2!

. ~29a!

We now look for a change in sign of the denominatorD(x)
of Eq. ~22! and its derivativeD8(x)5dD(x)/dx for x50,1.
We find

D~0!516p2,

D8~0!5p2s2
3~3L214s2!~6L219sL214s2

2!,

D~1!5p2
„32~s2

321!13L2
2~8s2

223!148L2s2
2
…,

~29b!

D8~1!5p2
„32s3~s2

321!148L2s2
2~3s2

321!

16L2
2s~17s324!9L2

2~4L2s2
311!)

As s2.1 by convention, we see thatD(0).0 and D(1)
.0, and similarlyD8(0).0 andD8(1).0. In view of the
particular form of Eq.~22!, one sees thatrS(x) will have the
same sign for anyx in the interval@0,1#, and hence, from Eq
~29a! rs will always be negative. In other words, our theo
predicts no demixing for arbitrary spherocylinders in a sta
dard hard sphere solvent. However, this prediction see
strongly related to the PY nature of the theory, and we
pect that simulation studies of thick spherocylinders in a h
sphere solvent should show an entropic demixing at reas
able fluid packing fractions.

Next we consider the mixture of a spherical solute i
mersed in a solvent of thin spherocylinders. The differen
from the previous case is that we can now consider la
spheres, whereas the diameter of the solvent spherocyli
is confined tos151 by convention. We will use the sam
method as in the previous case, as direct inspection of
~22! again gives no useful information. We find that

rS~0!5
212

p~3L114!
, rS~1!5

23

ps2
3

, ~30a!
6-9
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and the denominator and derivatives atx50 and 1 are

D~0!5p2~3L114!~6L1
219L114!,

D8~0!5p2@32~s2
321!148L1~s2

322!16L1
2~4s2

3217!

29L1
2~4L11s2

4!#

~30b!
D~1!516p2s2

6 ,

D8~1!5p2s2
3@32~s2

321!13L1
2~3s228!248L1#.

In this case, although the denominator remains positive,
see that the sign of the derivatives will depend on the siz
the solute and the length of the cylinder of the solvent p
ticle. However, for largeL1 it is likely that the derivatives
remain positive, and hence thatrS(x) has poles in the inter
val @0,1#, leading to situations different from Eq.~30a!. This
is exactly what we find numerically when the solvent cyli
der lengthL1 is larger than the solute sizes2.

In the figures below, we plot the composition of solu
x5x2 vs the total packing fraction associated with the sp
odal densitiesh5rS /@(12x)V11xV2# in the upper panel,
and the associated pressures in the lower panel.

In Figs. 4~a! and 4~b! we show two cases where the spi
odal demixing can occur. The pressure curves exhibit
typical U shaped curves, with a lower critical consolute po
at the minimum. However, we also must confront the dem
ing with the orientational instability that can occur when t
solvent particles are very long. In the figures, the orien
tional spinodal is plotted in dashed lines. In Fig. 4~a!, for
L1550 ands510, we see in the upper panel that the e
tropic demixing occurs at quite large packing fractionsh
.0.338, but that most of the demixing is buried above
orientational spinodal. In the very small region where dem
ing could occur (0.45,x,0.60), the packing fractions ar
already too large to expect a liquid phase.

We see that the pure solvent (x50) is ordered at all pack
ing fractions above 0.065, and that the further addition
spherical solute will shift the isotropic-nematic spinodal
higher packing fractions, as should be expected. This
nice feature of the theory, which seems correctly built in
geometrical approximation of the direct correlation functi
for mixtures.

The spinodal pressures,PS* 5Ps1
3/(kBT), as computed

from Eq. ~23! with the corresponding spinodal densities, a
displayed in the lower panel of Fig. 4~a!. We see that pos
sible entropic demixing can occur at same pressure for
different spherical solute composition~low and highx5x2).
In Fig. 4~b! a successful entropic demixing is shown forL1
550, but when the solute size is largers2520. The upper
panel shows quite clearly that there is a wide range of co
positions (0.05,x,0.45) of the large spheres. Beyond th
range, it is the orientational spinodal that will dominate t
phase separation. However, this takes place at unrealisti
high packing fractions (h.0.8). In such a case, we can re
sonably expect the entropic demixing to occur in the dis
dered phase, but at very low solute compositions (x5x2
,0.05). The lower panel shows the pressures. The reaso
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FIG. 4. ~a! The entropic demixing spinodal packing fractio
~upper panel! and corresponding pressure~lower panel! vs the sol-
ute compositionx5x2, for a mixture of a spherocylinder (s151
andL1550) and a hard sphere~HS! (s2510). The full line is for
the demixing spinodal, and the dotted curve for the orientatio
spinodal.~b! Same as in~a!, when the HS solute size is increase
(s2520).
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such small pressure values is related to the very small d
sities at which coexistence can occur. This is also relate
the choice of units~scaling by the smallest diameters1
51).

Finally, we also note that entropic demixing that is n
masked by the orientation spinodal can also occur whens2
.L1, for examples2580 andL1530. In such a case, how
ever, we find that this occurs only for very small solute co
positionsx5x2,0.03. Forx50.03, however, the total pack
ing exceeds 0.95, the value at which orientational orderin
supposed to take over. We thus conclude that the mix
remains disordered in the entire fluid region. This is to
expected, since such a large spherical solute will certa
perturb the orientational ordering.

It is not possible to find a general analytical criteria f
‘‘acceptable’’ values of (s2 ,L1), values which will show a
fluid-fluid demixing, partly due to the numerical part in
volved in the calculation of the orientational spinodal. W
will now turn to cases where both particles are true sphe
cylinders.

2. Equally thin spherocylinders mixture

The case wheres25s151 and L1Þ0,L2Þ0 is also a
case where the present theory does not predict demixin
all. Again, we first look at the solutionsrs(x) at x50 and 1,
which we find to be negative:

rS~0!5
212

p~3L114!
, rS~1!5

212

p~3L214!
~31a!

In addition, we find that the denominators of Eq.~22! for x
50,1 do not change sign, and similarly for their derivative

D~0!5p2~3L114!~6L1
219L114!,

D~1!5p2~3L214!~6L2
219L214!,

~31b!
D8~0!523p2~L12L2!~1615L216L1L2129L1112L1

2!,

D8~1!523p2~L12L2!~1615L116L1L2129L2112L2
2!.

Therefore this case leads to nonphysical negative demi
densities in the entirex range@0,1#, and hence fails to predic
demixing for a mixture of thin liquid crystals. It is difficult to
see if this prediction is a feature of the Percus-Yevick nat
of the present theory, or if it a generic one. In view of t
fact that it is necessary to go to large size ratios in orde
find demixing for hard sphere mixtures, the present find
seems to be in good agreement. The authors are not awa
any experimental evidence of entropic demixing in liqu
crystal mixtures in the isotropic phase, although it is n
impossible that energetically favored demixing could occ
We leave this point open for future verification, most pro
ably by computer simulation techniques.

3. General case

In the general case Eq.~22! is of no help from an analyti-
cal point of view, and it must be solved case by case num
cally. We wish here to point out some of the general featu
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First we consider the case of equal length cylinders,
with different thicknesses. The solute spherocylinder is n
constrained to have the same cylinder length as the solv
but larger thicknesses. We observe that for thicknes
smaller than 6, the orientational spinodal will always ove
ride the demixing spinodal, regardless of the cylinder leng
From s2.10 it is possible to find demixing ifL is large
enough. Furthermore, the composition domain over wh
demixing can occur, shrinks toward small values whens2
becomes large at a fixedL value. Conversely, at a fixeds2
value, the demixing region increases with increasingL. Gen-
erally, as particles become larger, the demixing densities
come very small~and consequently the associated pressur!.
Then the addition of large solute particles will push the sp
odal densities toward lower values. But the total pack
fraction increases asL increases.

The demixing of equal length spherocylinders have be
investigated by Dijkstra and van Roj@6# with Gibbs en-
semble computer simulation techniques. They also compa
their results to calculations in the FOA. It is important
realize that computer simulations measure binodals, wh
are the equivalent of the phase coexistence curves. C
versely, the theories we discuss here predict spinodal cur
It is clear that the spinodal curves should be inside the c
responding binodal. The system simulated in Ref.@6# is for
the parameterss1 /s250.1 andL5L15L2515s2. With our
convention (s151), this is equivalent tos2510 and L
5150. In Fig. 5, we plot the spinodals corresponding to
present theory, together with those of the Onsager type th
ries and the binodals from the computer simulations. For
easier comparison, we have taken the same units as in
@6#, that is r* 5rb and p* 5Pbs2 /(kBT), where b
5p/4L2. We first notice that there is an appreciable diffe
ence between the SVCOA~dashed curves! and the FOA
~dotted curves!, which is in fact the reference theory in Re
@10#. The density range at which demixing is predicted
between 0,rs1

3,0.3231024, and for such small densitie
that we expect that a second virial coefficient approach to
a good approximation. However, we observe that this
clearly not the case. In fact thex range over which the theo
ries coincide is about 0,x,0.05. Surprisingly, it is the FOA
that is closer to the results from the GADCF. As the orie
tational spinodal is independent of theL/s→0 limit in any
of the Onsager type approaches, the two curves for the s
odal densities are identical. However, the correspond
pressures differ, as the FOA neglects the spherical caps
tributions in theB2 in Eq. ~25!. The binodals that one would
associate with these curves should be outside and broad
shape, with one contact point with the corresponding sp
odal curves; that would be the lower consolute critical poi
Reference@5# contained an example of both such curves
hard sphere mixtures. As noted by Dijkstra@6#, the critical
composition predicted by the FOA,x2'0.2, is in rather close
agreement with that of the simulations. The GADCF predi
a smaller critical compositionx2'0.14. Of the three theo
ries, it is the FOA that predicts a critical pressure closes
the simulation results. We note that the binodal from t
simulations is very broad. But in the absence of free ene
calculations, it is not possible to predict the true shape of
6-11
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HADRIEN BOSETTI AND AURÉLIEN PERERA PHYSICAL REVIEW E63 021206
binodal associated with the GADCF for the present case
Ref. @6#, binodals of the FOA~from their unpublished Ref
@25#! were plotted, and these curves were below the bino
of the simulations. In view of this one might expect that t
binodals of the GADCF might be above and closer to
simulation results than the current spinodal. The comp
sons of the orientational spinodals are easier, as the isotro
nematic transition is weakly first order. Hence we expect
spinodal to lie closer to the binodal in this case. Howev
this is not the case for the Onsager theory, which predic
large density gap@1#. In general the orientational spinod
from the GADCF is closer to the simulation results than
two others. However, in Ref.@6#, the binodals associate
with the FOA are again below but quite close to that fro
the simulations. We observe that the geometrical the
strongly underestimates the isotropic-nematic spinodal
the pure solute (x51), a feature that was already notice
@15#.

In order to test the degree of convergence of the th
theories, in Fig. 6 we consider the case of very long sphe
cylinders. We note that the FOA is independent of the in
vidual cylinder lengthsL1 andL2, and depend only on thei

FIG. 5. The entropic demixing of a spherocylinder mixture
equal lengthL5150 and different thicknesses (s151 and s2

510). The densities in the upper panel arer* 5rSb, and the pres-
sures arep* 5Pbs2 /kBT @b5(p/4)L1

2s1#. Full lines are for the
GADCF, dotted lines for the SVCOA, and dashes for the FOA. T
U shaped curves are the demixing spinodals, and the monotoni
decreasing curves~for increasingx) are orientational spinodals. Th
open cubes are the Gibbs ensemble demixing binodal from Ref.@6#,
and the filled dots for the orientational binodal are from the sa
reference.
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ratio @10#. The corresponding curves in Fig. 5 are then
infinitely long cylinders, as opposed to the two other the
ries, and it is quite surprising to see that all three curves
quite close to each other. In order to further test the adequ
of the theories to fit the FOA, in Fig. 6 we plot the spinod
densities and pressures fors2510, but with L15L25L
5104. We observe that all three curves indeed merge as t
should. In fact they have still some small differences that c
be observed for larger densities and pressures. They m
totally for L'106. At L5103, for example, the curves ar
well separated forx.0.3, and merge relatively well fo
smallerx values. In view of these results, we conclude th
the agreement in Fig. 5 between the FOA and the simulati
seems fortuitous.

The influence of the cylinder length of the critical poi
was also studied in Ref.@6#, namely, whenL/s2 varies at
fixed s2510. The comparison with the GADCF in Fig.
shows that, asL/s2 becomes smaller, the discrepancies
the spinodal increase in a dramatical fashion. The the
indicate that the critical points move to higher pressures
lower compositions, whereas the simulations show
change at all in the position of the critical points. This stro
discrepancy certainly deserves further investigation. It see
that the predictions of the GADCF are more natural,
shorter particles will push the demixing toward lower com
position regions and higher pressures and packing fracti
Eventually, for even shorter spherocylinders, the demix
will disappear, as it will occur only at unphysically hig
pressures and densities. Hence one would also expec

e
lly

e

FIG. 6. The entropic demixing of spherocylinder mixtures in t
quasi Onsager limit (s151, s2510, andL15L25104). The line
symbols and units are used as in Fig. 5.
6-12
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ENTROPY-DRIVEN DEMIXING IN SPHEROCYLINDER . . . PHYSICAL REVIEW E 63 021206
critical point to follow a similar trend. The simulations how
ever agree with the GADCF only in that they both predic
narrowing of the spinodals and binodals with decreasing
inder lengths. The FOA is shown by a single dotted cur
and is seen to be independent ofL/s2.

For the case of unequal cylinder lengths, we consi
again the TMV example of Sec. III A. There is a possib
demixing in this mixture that occurs at very small isotrop
TMV compositions. This is shown in Fig. 8, where the thr
theories are compared for both the spinodal densities
pressures. The trends are very much similar to those
served in Fig. 5. The GADCF has the narrowest spino
curve and the highest critical pressure. We also note t
despite the quite long cylinder length of the TMV, the O
sager regime is clearly not reached. In view of what is fou
here and what was described in Sec. III B 1, we conject
that entropic demixing is more likely to be observable wh
a nonorienting fluid is added to a liquid crystalline solve
In such a case, the orientational spinodal can be suppress
the solute shape is close to spherical. If both fluids are liq
crystalline materials, then demixing could occur only in
very narrow low composition window for the larger mo
ecules. This needs to be confronted with experiments,
eventually computer simulations.

C. A very particular case: Spherocylinders in needles

The case of spherocylinders immersed in a fluid of h
needles was also investigated by Dijkstra and van Roij@6#
using Gibbs ensemble techniques. The hard needle flui

FIG. 7. The entropic demixing of equal length spherocylind
mixtures of different cylinder lengths (s151, s2510, andL5L1

5L2). The lines are for the GADCF~topmost curve forL530,
middle curveL580, and lower curve forL5150. The dotted line is
for the FOA. The symbols are Gibbs ensemble simulations bino
from Ref. @6# ~open dotsL530, filled dotsL580, and starsL
5150). The units are as in Fig. 5.
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three dimensions is very peculiar as it has no excluded
ume, thus it can be packed to infinitely high densities. He
such a fluid will never order as it behaves as a fluid of no
interacting ideal particles. However, when a particle is add
to it, there will be an excluded volume between the tw
components. Because of the geometrical simplicity of
interactions, this case can also be described by the GAD
The fundamental measures of the needle are reduced to
mean radius, which from Eq.~26! is Rm5L/4, whereL is the
length of the needle. We see from Eq.~14! that the second
virial coefficient of the needle is zero, and that the DCF
identically zero, indicating the total absence of interactio
between needles. The other partial DCF’sc12 and c22 are
nonzero, and the needle will contribute to their GADC
through the mean radii only.

We can thus calculate the demixing spinodal line us
Eq. ~22!. The results are shown in Fig. 9 forL15L25150
ands2510. The general trends are again quite similar to t
observed for both Figs. 5 and Fig. 6. We note that the criti
spherocylinder compositions found by the GADCF and FO
are in narrow agreement with the simulations results, tha
xc'0.11. This value cannot be reached through second v
coefficient only. We also note that the orientational spino
is somewhat closer to that of the GADCF.

A particular case of this type of mixture was also studi
by Gibbs ensemble techniques, namely, the mixture of h
rods and spheres@26#. In this case a very simple approxima
tion for the free energy, that was built from the Carhana
Starling free energy together with the Onsager approxim

s

ls FIG. 8. The entropic demixing of model TMV in a liquid crys
tal. The parameters are the same as in Fig. 2~b!. The line symbols
and units are as in Fig. 5.
6-13
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HADRIEN BOSETTI AND AURÉLIEN PERERA PHYSICAL REVIEW E63 021206
tion for the needles, was shown to predict binodals in v
good agreement with that from the simulations. As a f
energy is built in the GADCF, we also expect to see sim
agreement, particularly in view of the proximity of th
GADCF spinodal to the binodals from the simulations.

IV. CONCLUSION

In this work, we have presented an application to mixtu
of the geometrical approximation for the direct correlati
functions derived in our previous work@15#. Although we
did not compare the DCF itself to other theoretical a
proaches, namely, to integral equations results we sho
that the SPT pressure, that is consistent with the GADCF
in quite good agreement with Monte Carlo simulation
sults, for the case of a mixture of hard spheres and s
spherocylinders. The GADCF was essentially used to sh
that entropically driven phase separation could occur i
variety of mixtures of spherocylindrical particles. It was co
cluded that a mixture of liquid crystalline materials and lar
solutes is the most favored candidate. Our analysis sh
that a sufficiently large solute can preempt the orientatio
ordering of the solvent over a notable solute composit
range, for the case where the solute is a nonordering fl
This type of mixture is frequently encountered in experime
tal situations, but theathermaldemixing condition that we
describe here is a more demanding condition. Such cond
are generally met in colloidal liquid crystals. Although som
experiments on silica particles that illustrate demixing

FIG. 9. The entropic demixing of a spherocylinder and a nee
mixture. The symbols are the from Ref.@6#. All the symbols and
units are as in Fig. 5.
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hard spheres mixtures@27# are possible, we are not aware
a similar situation for nonspherical particles.

The main testing ground remains computer simulatio
which pose formidable challenges when the size ratios
very large. The few comparisons between theory and sim
lations shown in the present work indicate a convinci
agreement between theoretical spinodals and experime
binodals. However, these simulations are done for situati
tailored to fit the Onsager limits, in order to test theories bu
at that level of approximation. It is not the most desirable t
for the GADCF, which we believe should be more accura
particularly for particles with moderate aspect ratios. T
theoretical considerations from Ref.@26#, that are somewha
closer to the GADCF, indicate that the latter should prov
a better ground for predicting entropic demixing.

The GADCF fails to predict entropic demixing in thre
cases, namely, for hard sphere mixtures, for the more gen
case of spherocylinders immersed in a solvent of sma
spheres, and finally for equally thin spherocylinders. Fr
what is known for hard spheres, the second case should
candidate for entropic demixing, and the failure of t
GADCF here reveals the PY nature of the theory. On
other hand, it would certainly be worth testing the predicti
of integral equations, including the PY approximation, co
cerning entropic demixing in nonspherical hard particles
is known that the PY theory predicts entropic demixing f
positive nonadditive diameters@28#. In this respect, if one
considers a mixture of nonspherical particles as effec
spherical particles, the corresponding effective diame
will most likely be larger than the smaller size of the pa
ticles. Thus, in the absence of ordering tendencies, wh
means when particles are locally disordered, one might
proximate the interactions as nonadditive hard sphere in
actions. On this basis, one would then expect the PY the
to predict entropic demixing for such mixtures, and it mig
also explain the results that are found herein for the GADC
Such an argument, however, does not account for the de
ing that is found when both fluids are ordering ones, as m
of the nearest neighbor contacts are truly additive in t
case.

Finally, in view of the fact that the GADCF is PY like, i
is quite probable that the boundaries of the demixing regi
that are predicted from this theory are most likely conser
tive predictions. If demixing shoud occur, it will probabl
occur within the range of parameters predicted by
GADCF, and even at lower values. In this sense we
argue that the demixing densities predicted by the GADC
for a fixed set of molecular parameter, are most likely up
bounds to that can be deduced from more complete~in a
diagrammatic sense! theories. This argument is supported b
Figs. 5 and 9 in particular, where on sees that spinodals f
the GADCF are well above the binodals from the simu
tions.

Considering future investigations, it would be interesti
to test the present theory for other convex body mixtures
particular, entropic effects in mixing platelike particles, cu
spheres for example, and spherical or rodlike particles m
be quite different. It would also be interesting to analyze
influence of the shapes. In this respect, it would be of imp

le
6-14
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tance to extend the GADCF into ordered phases, so tha
influence of entropic effects on the ordering can be also
counted for. On this subject also, only second virial coe
cient theories were provided in recent years@26,30#. A first
elementary step in this direction would be to calculate
entropic effects in rigidly ordered fluids. Preliminary inve
tigations indicate that entropic driven demixing can also
stabilize such types of mixtures.

APPENDIX: ADDITIVE HARD SPHERE DEMIXING
IN THE SECOND VIRIAL

COEFFICIENT APPROXIMATION

The additive hard sphere virial coefficient is for mixtur
B2;ab5p/12(sa1sb). At the lowest density expansion ap
proximation one hasc̃ab

000(k50)522B2;ab , and this ex-
pression can be inserted into Eq.~18! in order to find the
spinodal density. Surprisingly, the correspondingrs is a
positive function in the whole interval ofx @0,1#, unlike the
PY case for which it is negative@see Eq.~28!#. It is possible
to compute the critical composition of the large spheres~with
diameters) by calculating the single minima ofhs(x) in this
x interval. This critical value is
, J

. A

02120
he
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xc5
1

11s3
. ~A1!

The corresponding consolute critical density is given by

rc5
6~11s!@8s3~s22s11!1~11s!2~11s2!As3#

ps3~s21!2~s418s3130s218s11!
.

~A2!

In order to have a fluid mixture, that is, whenh,0.5, one
needs at least the conditions>2.95. Fors55 and a packing
of small spheres ofhs50.3, the minimal large sphere pack
ing fraction for demixing ishL'0.015, which is seen to be
quite small, when compared to values obtained from integ
equations~see Sec. I!. This demixing tendency at the SV
COA level of approximation is stronger than for any oth
integral equations. It is quite interesting to see that the
theory that has the correctB2, is incapable of producing a
demixing. Coussaert and Baus@5# found that it was neces
sary to include up to a fifth virial coefficient in the PY equ
tion of state to trigger demixing, which, however, was no
found to occur at all size ratios.
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