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Entropy-driven demixing in spherocylinder binary mixtures

Hadrien Bosetti and Autien Perera
Laboratoire de Physique Theque des Liquides, Unitassocie au CNRS, UniversitBierre et Marie Curie, Case Courrier 121, 4 place
Jussieu, 75252 Paris Cedex 05, France
(Received 23 August 2000; published 26 January 2001

The stability of binary fluid mixtures, with respect to a demixing transition, is examined within the frame-
work of the geometrical approximation of the direct correlation for hard nonspherical particles. In this theory,
the direct correlation function is essentially written in terms of the geometrical properties of the individual
molecules, and those of the overlap region between two different molecules, taken at fixed separation and
orientations. Within the present theory, the demixing spinodal line in fhepb) concentration plane is
obtained analytically, and shown to be a quadratic function of the total packing fraction and the compositions.
The theory is applied herein to binary mixtures of hard spherocylinders in the isotropic phase. Isotropic
fluid-fluid demixing can be predicted for a large variety of sizes and aspect ratios, and the necessary condition
for entropic demixing is a sufficiently large thickness difference between the two particles that belong to each
of the fluids in the mixture. As the theory reduces exactly to the Percus-Yevick approximation for a hard sphere
mixture, accordingly it will not predict fluid-fluid demixing for this particular case. Demixing is also forbidden
in two other cases; for a mixture of spherocylinders and small spheres, and for mixtures of equally thin
spherocylinders. The influence and competition of an ordering instability on the demixing is also examined.
The ordering of a fluid will always be displaced toward higher packing fractions by the addition of a nonor-
dering fluid, and in some cases the entropic demixing can dominate the entire fluid range. Although the present
theory merges exactly with the correct Onsager limit, it is shown that, for intermediate cases, the results can be
significantly different from predictions of Onsager type approaches. These discrepancies are analyzed in
particular for the needle plus spherocylinder mixture. Finally, in view of the nature of the theory, it is
conjectured that the predicted demixing densities values are rather upper bounds to what should be expected.

DOI: 10.1103/PhysReVvE.63.021206 PACS nunier61.20—p

[. INTRODUCTION particularly for the large spheres. Computer simulations are
meeting a real challenge on this ground, and to date no con-
The entropy driven phase transition in hard core molecuclusive results have been proven, although the general con-

lar fluids has been a well established phenomenon since tif€nsus is that large spheres are more likely to form some
pioneering work of Onsagefl], who showed that an amorphous crystalline phase before the phase separation ac-

isotropic-nematic phase transition could occur in a fluid Oftually ocl:curs[5_,6]. h h idering i
infinitely long spherocylinder like shaped molecules, inducedmi )’(At‘ErZ t)e]crr:lag[:]\lsepﬁgﬁgearr r;[a?dt iﬁ??;ggétulezonéln Ej‘[ﬂir;gs'jb"f‘
S ; ‘Mtions such as the Percus Yevick theory, although such an
ration In hard core fluids could also oceur un(_jer appro_p”a_t%pproximation has been shown to be solvable and reliable,
qon_dmons. How_ever, one of the major analytical theories ing, pure fluids only. Here, one must rely solely on density
liquid state physics, the Percus-Yevick theory, outruled suclyyctional theories, and eventually on computer simulations.
phase separation for additive hard sphere mixtl@&sAbout  Among all the convex bodies, spherocylinders have a place
a decade ago, Biben and Hand@) showed that closure of choice, as they have been abundantly studied by computer
relations more elaborate than the Percus-Yevick approximasimulations. When compared with hard ellipsoids, they form
tion, could in principle predict such a phase separation fola more realistic class of model for liquid crystals, as they can
hard sphere mixtures when the size ratio exceeds 4. Howexhibit smectic phases, in addition to nematic phases. The
ever, they found that the predicted spinodals depend severegntire phase diagram for a single spherocylinder fluid was
on the closure relation. For example, for a size ratio 5 and aecently mapped by computer simulatiofg. This type of
packing fraction of the small spheres g§= 0.4, the hyper- fluid was also studied by integral equations technid@s
netted chain approximation predicts phase separation at a For mixtures, Dijkstra and van Roij calculated the phase
large sphere packing fractiop =0.124[4]; however, the diagram of needles mixed with spherocylindgg§ and pre-
more accurate Rogers-Young closure predicts a larger valugicted that phase separation does occur, in rather close agree-
of 5,~0.32[3], and surprisingly, another accurate closure,ment with Onsager type density functional theories based on
the Ballone-Pastore-Galli-GazzillBPGGQ closure, predicts simplified second virial coefficients. On the theoretical side,
no phase separatid] in this case. Nevertheless, their find- most approaches have been based on second virial coeffi-
ing opened a way to several investigations on the subjectient approximations of the Helmholtz free enef@y-11].
mostly focused on hard spheres. More recent work cast sonfeuch approximations merge with the Onsager thegdry
doubt on whether such entropy driven phase separation agvhich is valid in the limit of low density and elongated par-
tually occurs in hard spheres mixtures in the fluid regionjticles. In principle, one could envisage a rescaled approach
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of such an approximation where, while the excluded volumeSec. lll, we consider several particular cases of mixtures, and
would be limited to the second virial coefficient, the densitycompare the GADCF with Onsager type approaches and
effects could be considered at the level of the Percus-Yevickvailable computer experiments. In Sec. IV we give our con-
theory. Indeed, such approaches have already been used fdusions and future expectations about the GADCF for mix-
quite accurately predicting the entropy driven isotropic-tures.

nematic phase transition in hard core flujdg], and could,

in principle, be extended to the case of mixtures. However, it Il. THEORY

would be more desirable to have an approximate theory \ye consider a binary mixture of hard core convex bodies
which goes beyond both the Percus-Yevick and the Onsagey the isotropic fluid phase. The theory below is independent
approaches. The only case where this goal have been appligdany particular choice for the convex bodies. In Sec. Ill, we
successfully is the hard cubes mixtuf@s]. The theoretical || explicitly consider spherocylindrical molecules.
predictions were compared with lattice simulati¢fd] both The partial number densities are notpd and p, (p;
of which predict phase separation _in these toy fluid models— N, /V), and the total density is= p,+ p,. The fraction(or

In the present work, we would like to consider the prOb'compositioﬂ of each specie is defined by,= p,/p, and the
lem of entropy driven phase separation in the light of thepacking fraction is defined ag,=p,V, (e=1 and 3
geometrical approximation for the direct correlation function,,herev is the volume of the molecule of specie Being a
(GADCF) that was proposed earligt5]. The direct correla-  onyex hody, each molecule of of the fluid componaris
tion function (DCF) plays a fundamental role in theories of o entirely defined by the three geometrical properties as-
liquids, mainly through the Ornstein-Zernike equation. Thisg,iated with its shape, which are the volumg, the sur-

is theoretically more appealing than the pair correlation funC, .o s and the mean radil@ We will further restrict
al Ma *

tion, because it has the same range as the pair interactiome symmetry of the molecule to uniaxial, such that the ori-

and, in particular, remains short ranged at the critical point. tati ¢ leculei ified by th it G
For hard core particles, this range is strictly limited to the&ntation of any moleculeis specitied by the unit vectar

spatial region where two particles overlap. The major draW-With an_gles 0 ’¢i).in the lab fixed ff?‘me- The struc;ural .
)propertles of the mixture can be described by the partial pair

back, however, is that the DCF is not a measurable quantity,. >~ "" . . S
as opposed to the pair correlation function. This is quite stribution functionsg,,4(12) and the partial pair direct cor-

severe handicap when considering computer simulationgelationsc,(12), where (1,2) stands for {,u;,uz), and

The GADCEF gives a physical grasp to this quantity by pos— 4, is the vector connecting the centers of mass of the two

tulating that the DCF of any fluid of hard particles can bemolecules 1 and 2, belonging to speciesand 3, respec-

expressed in terms of the geometrical overlap between thévely. For nonspherical molecules, these correlation func-

molecules, with all the density dependence appearing only itions can be conveniently expanded in the isotropic phase in

form of prefactors. Such a formulation is particularly conve-appropriate basis which accounts for the symmetry of the

nient for mixtures, as the only requirement is a knowledge ophase,

the geometrical properties of individual constituents. The

GADCF has been tested for single fluids of a variety of con- _ mnl mnl;s N8

vex bodies, such as ellipsoids and spherocylind&® and tep(12) %| o (NETT, Uy, Uz), (13

cutsphere$16], and has been extended to nonconvex bodies ) )

such as hard sphere chafi¥]. It has been quite successful Wheret(12) can be either of(12) org(12). The rotational

in predicting the pressures, structure, and orientational pro;jnVa”am.q)mnI is expressed in terms of spherical harmonics

erties of this type of fluids, both in three and two dimensions@nd carries all the information on the vector part of the prop-

[18]. The GADCF has two interesting properties. First, it €My t.5(12), while the expansion coefficiertt$;(r) contain

reduces exactly to the Percus-Yevigky) approximation for ~ only the radial dependence. Below we recall the expression

hard spheres. Second, in the low density limit, it reduces t®f the rotational invariants for the isotropic phagE9],

the Mayer function, and hence is reduced to the Onsagethich are independent of the specie specificationss],

theory for very elongated particles. In view of the first prop-and which are written in terms the generalized spherical har-

erty, it is not obvious at all that the GADCF should be suitedmonicsRlTO(ﬂ) and the 3-j symbols as

to study entropic phase separation, since the PY theory does |

not predict entropic demixing. However, because itis able to . ni s cmni m n T S TP

predict the orientational instability of liquid crystals, in P™(12)=f MEM (M v )\) RL0(U1)Ryo(U2)Ryo(r)-

rather good agreement with the hypernetted cH&NC) (1b)

approximation, as opposed to the PY approximation, one is . ] )

led to believe that the GADCF may incorporate a better deVWe will consider the so called “Blum choice” for the coef-

scription of the excluded volume effects. ficient f™"'=/(2m+1)(2n+1) which is consistent with a
The remainder of this paper is divided as follows. In Sec.convenient matricial rearrangement of the Ornstein-Zernike

Il we will first expose the general theoretical frame for cor- eéquation[19,20.

relation functions of nonspherical molecules, and particularly The theoretical goal is then to accurately compute

the relation to the demixing spinodal. The GADCF is thentg‘gl(r)’s. Some of thetfg'(r)’s are particularly meaningful.

introduced explicitly for mixtures, and we show that the de-For example, it can shown be thdf(r), which is the angle

mixing spinodal can be cast in a simple analytical form. Inaverage oft,z(12), can be related to thermodynamic prop-
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erties such as the pressure of the isothermal compressibilitthe Fourier-Hankel transforms of the expansion coefficients
whereag ) is related to the dielectric constai@tl] andt?;) R™(k) andc™5'(k), which are defined by

can be related to the orientational stability of the fl[@2)].

Usually, these coefficients are computed within the integral ~mn o mnl

equation formalism, with a great deal of numerical effort. hap (K)=4m(—1) fo drrehgg (ji(kr), 4
The geometrical approximation of the direct correlation

function[15], that we shall recall below, allows a much sim-

.pe n| .
plified route to compute any of thé;ﬁ.(r) independently of  gjmijar definition also holds for the transform of the DCF.
the other(mnl) values and with minimal numerical effort. As we are interested in the=0 limit, using the math-
Fortunately, for our concern here, we need not compute thg5tical property of the Bessel function, Iin‘bj|(x)%x',
entirer dependence of such expansion coefficients, and we X

shall see that a knowledge of the zero moment of the Fourief€ See from Eq.(4) that, if the expansion coefficients

~ mnl .
transform of these functions;‘,;"(k:O) will be sufficient to h,p (r) are well behaved short range functions, then only the

gather sufficient information on the location of the fluid-fluid ![hzo terdms will reTe:mtlrr]] tth§k=0tllm|tihTh|s app(ljlelslfor alnyth
phase separation spinodal line. ermodynamic state that is not on the spinodal line. In the

k=0 limit, the OZ equation decouples nicely into the follow-
ing form:

where j|(x) is the spherical Bessel function of orderA

A. Density correlations and spinodals

Statistical mechanics relates the convexity of the free en- _ _ 1 - ~
ergy to the mechanical stability of the phase, which is then Rjg°(0)=ClF%(0)+ ———= > p,hl"(0)cT(0).
delimited by a spinodal line. As this line is approached, large 2m+1 "y
concentration fluctuations will occur, rendering the actual ®)
phase instable. The correlation range of these fluctuations this equation can be further cast into a matricial form by

directly related to the long range behavior of density corre- . e ~
lation ~ functions g,5(12), or equivalently h,(12) introducing the matrices$l,, and C,,, whose elements are

=0,5(12)—1. The approach of the spinod#br phase defined by

boundary line can be then monitored through the>0 be- =D

havior of the Fourier transforms of these functi«fr@(lZ), AM= o os hag (0)

which diverge exactly at the spinodal lin& {s the inverse B P Pomt1’

wavelength. There are two ways one can seek for the spin- (6)
odal. One possible way is to look at the relation between the Tmm(g)
thermodynamical variables that control the stability of the agg): m JeB 1T

phase and the microscopic correlations that are related to Vv2m+1

them. For example, the convexity of the Gibbs free energy
per particleG/N is related to the partial structure factors Then, the OZ equation in the=0 limit is simply a matricial
S.p(K)= VXX gl 8apt VXXgho% (k)] through the relation product:
[23,24 ~ ~
(I+H)(=C=1I. (7)

It can be seen that, fan=0, the first matrix in the prod-
uct above is simply related to the matrix of the partial struc-
ture factors that appear in E(R) by the following expres-

é’ZG/(NkBT))
N,P, T

2
ax?

_ _ Al _ _ 2) sion
lim [Xx§S5(K) +X5511(K) — 2X1%S12(K) ] ) ~
k=0 S.p(k=0)= X X4 8,5+ HD). 8
The divergence 08,,(k—0) will then signal the enhance-  Equation(7) allows us to compare the phase separation

ment in concentration fluctuation and the change in curvaturgpingdal with that of the liquid-vapor spinodal for a pure
gosds ?f iogvgxnytlmtﬁ. A“i”t‘r?t'vg'y’ :h? Szp'nrc(’%"j‘zl)“”e can fiyid. In the latter case, the OZ relation can be written as
€ detected directly through the Lrnstein-zerl Caua 114 pR(0)][1—pc(0)]=1, in terms of the correlation func-
tion atk=0. In the Fourier space, this equation reg2s] 'Eionspogtrz(]e[simgle( flzj]id. As the spinodal line is approached,
- - 1 . ~ h(0) will tend to diverge, due to the building of long range
hap(12)=Cop(12)+,— > p, | dugh,(13)C,4(32), density correlations im(r). But the direct correlation func-
7 &) tion remains finite, even at the critical point; thus the diver-
gence ofh(0) can be monitored by the limit-1pc(0)—0.
where (12) stands now fok(U; ,U,). Upon expansion of the In the case of a mixture, we see that the condition
functions in rotational invariants, and carrying out the angu- 5
lar integral, the OZ equation can be written solely in terms of det(l-C,)=0 9)
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can be considered as the alternative definition of the spinwhere the sum is carried over all the specien the mix-
odal. This is the definition that we will be using throughout ture, and thet parameters are the fundamental measures of
this work. Itis importan[ to see that the matrix e|em@ ) the SPT associated with the mean radius, the surface and the
remain finite on the spinodal line, and that any divergence irV0|Um(6)0f each convex bOdVl,(t?fOUgh the notatiorg,
A will appear in Eq.7) through the condition in Eq9).  — 1+ €17~ Rma, £7=S,, and&5™=V,.

a8 e ; The expressions for the coefficienisin Eq. (10) were

We see that Eq(9) also contains information about the p Q.

orientational spinodal, as opposed to the case of spheric§€rived in Ref[15] as combinations of second order partial
particles fluid mixture. Indeed, conditid®) can be also sat- derivatives of the SPT free energy density, and here we re-

isfied form=0. Hence there can be competition between arf@ll their explicit expressions:
isotropic spinodal(like a disordered phase separajiand

3
the appearance of an orientational spinodainfiet 0. In par- Yv= 70 + 271772 +i _
ticular, the orientational spinodal for isotropic-nematic tran- (1= 732 (1—73)° 47 (1— 5y
sition occurs form=2 [22].

The studies of phase separation based on(&g.which 7 1 775 1 Yapmo
are focussed on the stability of the mixture, are quite differ- Xs= >t - 3 +E 5 (12
ent in spirit from those based on approximations of the free (1=73) (1=73) (1=73)
energy, which need no reference to structural properties.

They are also more demanding, as an accurate description of 1 RimaRmg 72
L o Xo= +Ya .
these properties is a prerequisite. 1-7n3 PRmet Rmg (1— 75)?

In order to apply the above formalism to actual phase
separation, we need to compute the correlation functions fofhe coefficientsy,; have been tailored in order that the
explicit cases. This can be achieved, for example, by integre@xpression for the DCF gives the correct SPT isothermal
equation techniques for mixtures of nonspherical particlescompressibility[15]. They also ensure that the DCF, as de-
However, it is quite a cumbersome route to obtain thesdined in Eq.(10), reduces exactly to the PY expression for
functions, as it is already quite numerically involved for the hard spheres mixtures. We note that the last two coefficients
single component case. Moreover, the integral equations agctually depend on the pair of moleculea,() through
known to be less reliable close to the phase separation whéhese coefficients, which are given by
many body effects become more important.

One alternative route is the geometrical approximation of RmaV s+ RmgVa+ SaSp (Rma+ Rmg)
the direct correlation function which has been shown to be _ 4m (13
quite accurate in computing the thermodynamical properties Yap™ SVt SpV, '
and the DCF for simple fluids in many casgs,18. The a7 T 2RmaRmsB2.ap

general formalism was presented in Réf5]. We recall and

detail the theory in the present context, with explicit appli-where B,..p is the second virial coefficient associated with

cation for binary mixtures. the pair (@,B). For convex bodies, there is simple a analyti-
cal expression for this coefficie25]:

B. Geometrical approximation of the direct correlation
function of mixtures B2.ap= (Vo1 Vgt SiRmgt SgRme) /2. (14)

The pair direct correlation is approximated by the follow- Equations (10)—(14) complete the prescription of the
ing expression, which involves the geometrical properties olGADCF.

the overlap region of two convex bodies: The overlap volumes and surfaces can be written simply
as convolution products of the elementary weight functions
Cap(12)= = xvAV,5(12) = xsA S, 5(12) + xoF 45(12), associated with the volume and surface of each convex body

(100  [15]. Explicit analytical expressions for the expansion coef-

whereAV, 4(12) is the volume of the overlap between mol- ficients of these terms were given in REL5] for different
ecule 1 of specier and molecule 2 of specif, AS, 4(12) geometries. The Mayer functions expansion coefficients, on
is the surface of that overlap andFaZ(12) the other hand, must be calculated by a numerical computa-

= exf] — ¢.5(12)/(ksT)]— 1 is the Mayer functiof ¢ ,5(12) tion of the angular integrations, as outlined, for example, in

is the interaction energy between the two molecules, whictRef: [22]. For the present problem, however, we do not ex-

is simply in the present case infinity when two particles overPliCitly need expansion coefficients, but rather thki=0
lap and zero when they do fofThe coefficientsyy, xs., values for the more important of them, namely, fier= 0 and

: - for m=2.
and y, depend only on the partial densities and the geometri- . e .
Xo deP y P d It is not difficult to realize that the angular average of the

cal characteristics of the two molecules through the follow- X ; .
ing parameters which are the elementary variables of th verlap regions, when integrated over all separations lead to

scaled particle theor¢SPT) [2], the simple combinations

37000, _ _ g —
nizz pagi(a)’ |:0, 1’ 2' and 3' (11) AVaﬁ(k—O)—<J'dI’AVaB(12)>A R —VaVB,

uq,us

(159
021206-4
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AVIZ(k=0)=0 (m,n,1)#(0,0,0, ( ~ Eﬂ”"(O)) ( LSO [0
pl\/m pZ\/m P1P2 2m+1
Aég%o(k=0)=<fdFASaB(12)>A  =S,V+SsV,, =0. (18)
Up,Up
(15b For m=0 one obtains very simple quadratic expressions
Agmgl(kzo)zo (m,n,1)#(0,0,0). for the spinodal in terms of the partial density variables. This

spinodal can be written either as a function of the two pack-
ing fractionsz, and #,, or in terms of the variablesp(x,).
Bther choices are possible, but we consider the ones above
particularly relevant to our presentation.

These results can be rigorously derived from the fact that th

overlap volume is the convolution of the individual volume
: . ?S

weights, a”‘?' the fact .tha_t _the overlap surface is the SUm OF -y the following notation, and for the remainder of this

the convolution of the individual volume and surface welghtspaper we will implicitly consider specie 1 as the “solvent”

for each pair of bodiegl5]. The most remarkable feature is and specie 2 as the “solute.” We then consider the demixing

that neither expressions have anisotropic contributionS,¢ v fiig when fluid 2 is added progressively to fluid 1.
which is also intuitive.

. . For the choice of variableszt, 7,) for Eq. (18) andm
For th? Mayer fgncUorFaﬁ(lZ), the angular and radial =0, after some algebra we obtain the following expression,
average is quite simply the excluded volume between th hich is symmetrical in both variables:
two bodies, which is known analytically for any convex y '
body to be twice the corresponding second virial coefficient

[25]: Agoms+ AT+ Aramy ot Agmp+ Ag i+ Ag=0,

(199

FIR(k=0)=—2B;.,5. (16)  where the coefficients are given by

There is also an anisotropic contribution to the Mayer expan-Aaa:V2(4TrVi+ S, —8mV,S,Rme) a=12 (B=2,)
sion coefficients in th&k=0 limit. These terms are known
analytically for few convex bodigl25]. For spherocylinders ~ A12=V1Vy[S$1S,(S;+S;) +8m(V1— S1Rm) (V2= S:Rm2)
it can be expressed simply in terms of the spherical cap di-

b e p ¥ ~47((SiRm) >+ (S2Rm) )],

ametero and the cylinder length for each individual specie
as (19b)

A= =8V, V5m(V,~S,Rn,), =12 (=21,
N

Fo="35 LaLp(oatop). (17 Ao=—4mViVa.
For the other choice of variableg,k,) we obtain

[The factor\/5 in expression above comes from the choice in
Eq. (1b) for £22). p?A(BoX5+ByiXo+ By +p(B1iXo+ Big) +Bo=0,

We note that the anisotropy of the DCF for the GADCF in (209
thek=0 limit comes entirely from the Mayer function. Thus
k=0 orientational contributions to the GADCF will be With the coefficients given by
treated at the second virial approximation, in the spirit of the ) )
Onsager type approach. However, we note here that this conB22=(S11$:)(8$;—$;) +47(V1-V2)*+8m(V1-V2)
tribution is rescaled by a density dependent tgigwhich is _ _ 2
nontrivial. We note in particular that, is not the PY hard X (S2Rma = SiRm) + 47 (S1Rma = SRma)
sphere compressibility term, which is often used as a prefac-

tor to the Mayer function, for example in effective liquid Bo1=S:S(S1+ ) ~ 281 +87V1(Vo~ Vi + 2SR

type approximation such as SCELAZ2]. The present ap- —S,Rip) — 4m(S; R — SoRm1) 2~ 87VoS Ry s
proach predicts the orientational spinodal of simple fluids, in
close agreement with the HNC approximatidrb]. Boo=4mV2+ S — 87V, SR,
C. Explicit expressions for the demixing spinodal B11=87(V;—V,—SRm+SRim),
for a two-component mixture

It turns out that inserting the GADCF expression given in Bio= —87(V1—SiRm1),
Eqg. (10) into Eq. (9), together with the different terms from
Egs. (12—(16), the resulting calculation can be carried ex- Bo=4r. (20b)
plicitly for a two component system. In this case the relevant
partial DCF arecq4(12), c15(12), andc,5(12). From these expressions, one can solve trivially fgras a

The determinant in Eq9) is then function of 7,, or equivalently forp as a function ok,:
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— (A7t A2) = V(Apmat Ag)2— 4Ag Apy i+ Ay + Ag)
(1) = 5P , (22)

—(B1Xp+B1g) — V(ByXo+ B1g) 2 — 16m(BpX5+ B2iXo + Byo)
2(B X5+ ByXy+ By

ps(X2) = (22)

These expressions are particularly interesting as they can lm®mpare our expressions to those derived in Onsager type
inserted into the SPT pressure, which we recall is consistergpproaches, where the DCF is reduced to the Mayer func-
with the DCF given in Eq.(10) [15]. This expression is tion.
explicitly given by

D. Comparison with the Onsager limit

3
P __ "o 7172 1 72 23) It is important to examine the Onsager limit, as almost all
KeT 1—m3 (1—75)2 127 (1— 953 theoretical results on the the present topic are based on this
type of approximation. In particular we wish to show explic-

along the spinodal line. sager limit. This limit is appropriate to study cases where the

One can also compute the isothermal compressibiliyparticles are “very” elongated, and subsequently restricted
which for a two component system can be written in terms of© the very low density region.

the partial DCF a$21] There are two levels of approximation in this type of
theory. The first one consists of truncating the excess free
0 energy at the second order in density, neglecting virial coef-
XT 1 p[XZE9%%0) + X299 0) + 2x,%,5%%%(0) ], ficients higher than 2. This is strictly equivalent to reducing
XT the direct correlation function to the Mayer functipe.g.,

(24) Egs.(16) and(17)] to which it is rigously equal in the zero

0 ) ) __ density ideal gas limit. From Eq$12), we see that, taking

wherey1=1/(pkgT) is related to the ideal gas compressibil- the |ow density limit, only the terny,=1 will remain asp
ity. We note immediately that, unlike the single fluid case for g Tnerefore, from Eq(10), we see that our expressions
which the divergence of the compressibility is associatedor the partial DCF satisfy this limit correctly. Most theories
with the equivalent of Eq(9) [that is, 1-pc(0)=0], for  are based on this type of approximation, which seems rea-
mixtures this is not necessarily the case. Indeed, for a twgonable when the density is very lolwut not necessarily
component system, the expression for the inverse of the isavhen the particles are very elongateahless we state ex-
thermal compressibility is quite different from E@.8). plicitly what is meant by that. In what follows, we will refer

It is possible to derive the expression for the SPT chemito this level of approximation as the second virial coefficient
cal potentials from the thermodynamic identy= d¢/dp; Onsager approximatioSVCOA).
(i=1, and 2), wherep is the SPT free energy densitg]. The second level of approximation is precisely to take the
However, it was shown in Ref15] that, while the SPT infinite limit of size ratio. Onsager did that for spherocylin-
pressure is consistent with EGLO), in the sense that it can drical particles, of diametes and cylinder length., and in
be derived from direct integration of the compressibility, thethe limit L/c— o he neglected the spherical caps, retaining
SPT free energy is not consistent with the GADCF, mainlyin the second virial coefficient the first term remaining in that
due to the loss of information when arriving at expressionlimit. The essential purpose was to demonstrate that ex-
(10). Building a coexistence curve from the SPT free energycluded volume effects alone can drive an isotropic to nematic
will not necessarily be the same operation as building it fromtransition, and that was a pioneering breakthro{igh We
the DCF. More importantly, such a coexistence curve willwill refer to such an approximation as a full Onsager ap-
not necessarily coincide with the spinodal derived from theproximation(FOA).
DCF at the critical consolute points. For these reasons, we When coming to mixtures, we realize that, unless we take
will restrict ourselves here to the spinodal curve. both components to be extremely elongated, this limit is

We briefly examine the case of an orientational spinodalquite unrealistic, at least for the smallest component. In Sec.
Unfortunately, it is not possible to derive a simple expressiorll we will examine the particular case of a needle and rod
for this spinodal condition whem=2 in Eq.(9). The result-  mixture, for various rod sizes, and we will show that there
ing expressions are still polynomials in partial densities, butan be large differences between the two limits. Clearly, as
of degree 6 in the density variables. Hence these expressiotisis second case is only a limiting case of the second virial
are of no use for simple solutions such as Eg4) and(22). approximation, our theory is also able to correctly reproduce
We will solve these equations numerically in Sec. IIl. this limit.

We are now in position to study entropic phase separation The pressure in the Onsager approximation is given by a
for particular cases. Before we do this, it is instructive tosecond order expansion in density, similarly to the free en-
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ergy, and is simply written in terms of the second virial 25 T :
coefficients as

Po _ 2,42 2
kB_T—P+P(X152;11+X252;22+2X1X232;12)- (25 20

For the FOA, the second virial coefficients are simply taken
in theL/o— [10]. 15
Finally, there is one case that we would like to examine N
closely, which is the demixing of hard spheres in the seconda
virial approximation. We show in the Appendix that there is =
indeed a possibility for demixing hard spheres when the size 10
ratio exceeds 2.95. In view of computer simulation results
that predict this demixing to occuiif it occurs at al) around
size ratios of 10, we can appreciate the level of approxima-
tion that is made by retaining only second order terms in the 3
free energy. As the PY theory contains the Mayer function
exactly (and hence the second vitiabne may ask how this
contribution is destroyed by the approximated higher order 0
terms. Furthermore, as the GADCF is built on the PY ap- 0 0.2 0.4 0.6
proximation, one may wonder why it is more appropriate for n

predicting orientational ordering instability. We believe that £ 1. The compressibility factors for mixtures of spherocylin-
this could be due to the fact that the overlap volume angjers (=1 andL=1) and hard spheresr1) as a functions of
surface terms that are domindiq. (10)] do not contribute  the total packing fractiony. The symbols are Monte Carlo results
to the anisotropic part of the DCF in the=0 limit. In this  from Ref.[25]; the solid lines are for the SPT pressiiFg. (23)]
limit, it is only the Mayer function that gives a nonvanishing and the dotted lines for the Carnahan-Starling type approximation
contribution. Consequently, the PY approximation must in{15]. The upper curves have been shifted by15). The topmost
corporate the density dependence of the prefactor into data are for a hard sphere compositigr=0.7143, the middle data
Mayer function that is weaker thag,. for x;,=0.2, and the lowest data fo;=0.5. The dashed curve is
the second virial approximatidrg. (25)].

Ill. RESULTS: ENTROPIC DEMIXING .
IN SPHEROCYLINDERS MIXTURES =0'2/0'1 and LazLa/O'l. The volume, surface, and radius

) o ) will also be reduced by}, with n=3, 2, and 1, respec-
We now consider a two fluid mixture of spherocylinders, tjyely.

each specified by a diameter, and a cylinder length.,,
(a=1,2). For spherocylinders, the volume, surface, and _
mean radius are given 5] A. Comparative study of the pressures
In order to test the accuracy of the GADCF for mixtures,
it would have been nice to compare the structural data to that
from another theoretical methgsimulation or integral equa-
tions). As mentioned in Sec. Il, such a comparison would be
S,=m(L,+a,)0,, (26) possible only if DCE’s were available from integral equa-
tions techniques. This is not presently the case. Alternatively,
1 one could indirectly test the accuracy of the DCF through the
Rne==(L+20,). thermodynamical properties that can be derived from it,
4 namely, the pressure, and compare with computer simulation
results. Although such data are not available for spherocyl-
The second virial coefficients are then given by E). inder mixtures, there are some Monte Carlo pressure data for
The densities can be reduced by the cube of one of thgpheres and spherocylinder mixtuf&s] for equal diameters
diameters, which we choose arbitrarily to be that of specie 1and cylinder lengti.=1. Although this is a small anisot-
This is equivalent of takingr7 =1. Therefore, in all that ropy, it nevertheless allows one to examine the extent of the
follows, we choose specie 1, with the smallest diameter asalidity the geometrical approximation. The pressure calcu-
the “solvent.” This choice of solvent and solute is arbitrary, lated from Eq.(23) is shown in Fig. 1 together with the
and does not affect the generality of the discussion throughvionte Carlo data for three different hard sphere densities
out this section. We see that the agreement can be considered satisfying. In
The reduced partial densities are then definedpy fact, it is quite similar to that obtained for single fluid sys-
=p.03, where the same notation has been used for the reems. For the latter case, the agreement was considered quite
duced variables in order to avoid notational burden. Simitemarkable even for elongation as large as 11 for rigid bod-
larly, in what follows we also keep the notationr, ies, and 200 for freely jointed chaih&7]. For curiosity we

V. = (3L +20.) 02
a_lz( a 0'(1)0'(1,
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have added the truncated pressure from &), which is 25

clearly not an acceptable approximation in this case. Indeed
Eq. (25) gives a compressibility factd?/(pkgT) that islin-

ear in density, and its validity is then restricted to very small
packing fractions.

Now, in order to test the range of accuracy of E25)
versus that given by Eq23), in Fig. 2 we consider two
different cases, where the second specie is treated at th
SVCOA level. In Fig. Za) we consider an equimolar mixture .
of very elongated spherocylinderk{=100) in a spherical X
solvent (L;=0) in one case, and in a liquid crystal solvent =
(Ly=10) in another case. The respective pressures art
shown in Fig. 2a) for several theories. We have also added
the Carnahan Starling pressure that can be defined throug
the SPT variablefl5], and can be seen to be indistinguish-
able from that given by Eq23). On the other hand, E§25)
merges with the two others only for very small packing frac-
tions 7#<<0.002, which was to be expected.

In the second examplgFig. 2(b)], we consider a mixture
of colloidal TMV (tobacco mosaic virysn a typical liquid
crystal. This example is taken from R¢10] and the dimen-
sions of the two molecules arfghe TMV is component P
o,=45 A, L,=600 A, 0,=180 A, andL,=3000 A.
Reducing all units byo;, and keeping the same notations
with o=1, we have nowo,=40, L,;=133.33, andL,
=666.67. In this case, we see that the second virial approxi-
mation does not compare very well with the SPT pressure
[Eq. (23)]. We have also plotted a simplified version B§
where the second virial coefficients are further simplified by
taking theL/o—o limit. The simplified virial coefficients
then become,.,z=(m/4)L L s(01+ 0,)/2. These expres-
sions, and the associated pressures, were often used receng
[10,6], and we see here that they might not be the best ap:
proximations, as in this case they seem worse than the ful
second virial expression.

15

10

5

25

15

— T T
Vool e

10

Lol

\

B. Entropic demixing and orientational spinodal

Entropic demixing can be located by using the Gibbs free
energy curvature criteriggq. (2)]. This criteria can be writ-
ten in terms of the direct correlation functions, by using the
definition of the partial structure factofgq. (8)] through the
OZ equation(7) and the compressibility equatid@4).

Following Biben and Hanseri3], we define theA
=x1x2(a2[G/(NkBT)]/axi)N,pyT, and rewrite this expres-
sion by using Eqgs(2), (7), (8), and(24) in the term

0.1 0.2 0.3 0.4
7

0 .
0.5

FIG. 2. (a) The compressibility factor for an equimolar mixture
of spherocylinders with the same diameter 1. The solute cylin-
der length isL,=100, and the solvent is a hard spherk:=0,
bottom curve and L= 10 (top curve, data shifted by)5The line
symbols are as in Fig. 1b) The compressibility factor for a sphero-
cylinder model of the mosaic tobacco virugr,=40 and L,
=666.67) in a model liquid crystal solvento{=1 and L,
As one approaches the demixing region, from @ywe see  =133.33). The line symbols are as in Fig. 1. The long dashes as for
that A from Eq. (27) will decay to zero. This expression is the full Onsager limit.
used in Fig. 3 to show the possibility of an entropic demixing

X el - Ty).
XT

A (27)

for several mixtures, where the packing fraction of specie lliquid phase. Different size and aspect ratios of the sphero-

is fixed atn;=0.3, and that of specie 2 is varied between 0

cylinders have been considered. We see that the general

and 0.4, values that are reasonably small packing fractionsend for demixing, at reasonable liquid type packing frac-

for a fluid. We recall that for a hard sphere the fluid region

tions, is that the thickness of the second specie must be large

extends up top=0.49. In any case, it seems reasonable taand the cylinder lengths long. To be more specific, Fig. 3
keep the total packing fraction below 0.5 in order to ensure ahows that foro,= o; demixing never occurs regardless of
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15 solution, thus leading to no demixing. In this case, we find

. that the quadratic equatiofiEg. (22)] gives the following
negativevalue for a possible demixing density as a function
of the large spheres compositian

L (10,0,0) (10,1,2)

(1,50,150)

-3

] ps(X)= A1 x(o,m D] (28)
This absurd result is clearly a consequence, and an illustra-
tion, of the inability of PY theory to predict phase separation
for hard spheres mixtures.

] We now consider a spherical solvert;&0), when the

— solute particles are spherocylinders with arbitrary dimen-
sions (we recall here our convention that;=1 always.
This case that can be resolved from E@0b) and (22).
Direct inspection of the analytical result for E@2) is not
very helpful. Instead, we look at the values @f for x=0
andx=1, which we find to both be negative:

0.5
(10,10,10)

(6,60,40)

0 0.1 0.2 0.3 0.4 -3 _
e ps(0)= o ps(1l)=
FIG. 3. The phase stability criteri& related to the free-energy

convexity (see text for several spherocylinder mixtures, at a fixed We now look for a chanae in sian of the denominabix
packing fraction of specie 1z(; =0.3). The numbers in parentheses of Eq. (22) and its deriva%ivd:)’()?)=dD(x)/dx for Xd:ﬁé ]?
are the dimensions of both species,( Li, andL,) (with the We fihd T

conventiono;=1).

(299

ma5(Lot o)

the rod lengths. The topmost curve also reveals the Percus- D(0)= 162,

Yevick nature of the theory, signaling no demixing for

spheres with a size ratio as large as 10. This trend also per- D’ (0)=m203(3L,+40,)(6L%+90L,+403),
sists when the cylinders are shdgecond curve from the

top). In order to see a turnover of the curves, one must go D(1)= 7?32 03— 1)+ 3L5(805—3) +48L,03),

to large diameters and long cylinders. But this is not a nec- (29b)
essary condition, as indicated by the case with=5, but

with very long cylinders of lengthk; =60 andL,=40. Al- D'(1)= 772(3203(02— 1)+48|_20§(303_ 1)
though the general trends can be seen fromAthmirves, we

cannot see properly how changing the densities of the sol- +6L§U(1703—4)9L§(4L20'g+ 1))

vent influences the solute. For a more global view, we must

display spinodal curves. As o,>1 by convention, we see th&(0)>0 andD(1)

One feature that cannot be seen from Fig. 3 is that, if the- g, and similarlyD’(0)>0 andD’(1)>0. In view of the
cylinders become very long, then they will likely tend to particular form of Eq(22), one sees thaig(x) will have the
form an ordered phase at large packing fractions. The condigme sign for any in the interval 0,1], and hence, from Eq.
tion for_orientational instability is also given by Eq_)), Or (293 p, will always be negative. In other words, our theory
alternatively Eq.(18), but for m=2. For spherocylinders, predicts no demixing for arbitrary spherocylinders in a stan-
using Eq.(18) together with Eqs(10), (15), and(17) gives  dard hard sphere solvent. However, this prediction seems
an analytical expression that cannot be further reducedytrongly related to the PY nature of the theory, and we ex-
Therefore, we have solved for the zeros of this equation iect that simulation studies of thick spherocylinders in a hard
terms of either variables(, 7,) or (p,X2). sphere solvent should show an entropic demixing at reason-

We now examine the different cases that can be relevariple fluid packing fractions.
or not for entropic demixing. For this purpose, we examine Next we consider the mixture of a spherical solute im-
the quadratic form in Eq(22). We seek physical density mersed in a solvent of thin spherocylinders. The difference
solutions for this equation, as=x, varies between 0 and 1 from the previous case is that we can now consider large
(pure solvent and pure solute limitdn general, in view of  gpheres, whereas the diameter of the solvent spherocylinder
Egs.(20b) and(22), it will not be possible to tell if there is a s confined too;=1 by convention. We will use the same

demixing transition. Numerical investigation is necessarymethod as in the previous case, as direct inspection of Eq.
But there are few cases where this can be done analyticallypp) again gives no useful information. We find that

1. Spherical solvent or spherical solute

3
We first consider the pure hard spheres mixture, in which ps(0)= T(ELF2)’ ps(l)=—=, (309
case we recall that our approximation gives exactly the PY 1 mOo
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and the denominator and derivativesxat0 and 1 are
D(0)=m2(3L;+4)(6LI+9L,+4),
D'(0)=73203—1)+48L,(05—2)+6L%(405—17)

—9L%(4L,+09)]

(30b)
D(1)=167%09,

D'(1)=m?03[32(03—1)+3L%(30,—8)—48L,].

In this case, although the denominator remains positive, we
see that the sign of the derivatives will depend on the size of
the solute and the length of the cylinder of the solvent par-
ticle. However, for largd., it is likely that the derivatives
remain positive, and hence thai(x) has poles in the inter-
val [0,1], leading to situations different from E30a. This

is exactly what we find numerically when the solvent cylin-
der lengthL, is larger than the solute size,.

In the figures below, we plot the composition of solute
X=X, Vs the total packing fraction associated with the spin-
odal densitiesp=pg/[(1—Xx)V;+xV,] in the upper panel,
and the associated pressures in the lower panel.

In Figs. 4a) and 4b) we show two cases where the spin-
odal demixing can occur. The pressure curves exhibit the
typical U shaped curves, with a lower critical consolute point
at the minimum. However, we also must confront the demix-
ing with the orientational instability that can occur when the
solvent particles are very long. In the figures, the orienta-
tional spinodal is plotted in dashed lines. In Figay¢ for
L,=50 ando=10, we see in the upper panel that the en-
tropic demixing occurs at quite large packing fractions
>0.338, but that most of the demixing is buried above the
orientational spinodal. In the very small region where demix-
ing could occur (0.45x<0.60), the packing fractions are
already too large to expect a liquid phase.

We see that the pure solvent=€ 0) is ordered at all pack-
ing fractions above 0.065, and that the further addition of
spherical solute will shift the isotropic-nematic spinodal to
higher packing fractions, as should be expected. This is a
nice feature of the theory, which seems correctly built in the
geometrical approximation of the direct correlation function
for mixtures.

The spinodal pressureQ’s‘zPaf/(kBT), as computed
from Eq. (23) with the corresponding spinodal densities, are
displayed in the lower panel of Fig(a. We see that pos-
sible entropic demixing can occur at same pressure for two
different spherical solute compositiglow and highx=x,).

In Fig. 4b) a successful entropic demixing is shown for
=50, but when the solute size is larges=20. The upper
panel shows quite clearly that there is a wide range of com-
positions (0.05:x<0.45) of the large spheres. Beyond this

PHYSICAL REVIEW E63 021206
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FIG. 4. (8 The entropic demixing spinodal packing fraction

range, it is the orientational spinodal that will dominate the(her pangland corresponding pressuiiewer panel vs the sol-
phase separation. However, this takes place at unrealisticallte compositiorx=x,, for a mixture of a spherocylindero( =1
high packing fractions #>0.8). In such a case, we can rea- andL,=50) and a hard sphef&iS) (o,=10). The full line is for
sonably expect the entropic demixing to occur in the disorthe demixing spinodal, and the dotted curve for the orientational
dered phase, but at very low solute compositiors X5 spinodal.(b) Same as ir(a), when the HS solute size is increased
<0.05). The lower panel shows the pressures. The reason f¢e,=20).
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such small pressure values is related to the very small den- First we consider the case of equal length cylinders, but
sities at which coexistence can occur. This is also related twith different thicknesses. The solute spherocylinder is now
the choice of units(scaling by the smallest diameter;  constrained to have the same cylinder length as the solvent,
=1). but larger thicknesses. We observe that for thicknesses
Finally, we also note that entropic demixing that is notsmaller than 6, the orientational spinodal will always over-
masked by the orientation spinodal can also occur wihen ride the demixing spinodal, regardless of the cylinder length.
>L 4, for examples,=80 andL,=30. In such a case, how- From o,>10 it is possible to find demixing it is large
ever, we find that this occurs only for very small solute com-enough. Furthermore, the composition domain over which
positionsx= x,<<0.03. Forx=0.03, however, the total pack- demixing can occur, shrinks toward small values when
ing exceeds 0.95, the value at which orientational ordering idecomes large at a fixdd value. Conversely, at a fixed,
supposed to take over. We thus conclude that the mixturealue, the demixing region increases with increaginGen-
remains disordered in the entire fluid region. This is to beerally, as particles become larger, the demixing densities be-
expected, since such a large spherical solute will certainlgome very smal{and consequently the associated pressures
perturb the orientational ordering. Then the addition of large solute particles will push the spin-
It is not possible to find a general analytical criteria for odal densities toward lower values. But the total packing
“acceptable” values of §,,L,), values which will show a fraction increases ds increases.
fluid-fluid demixing, partly due to the numerical part in-  The demixing of equal length spherocylinders have been
volved in the calculation of the orientational spinodal. Weinvestigated by Dijkstra and van R§f] with Gibbs en-
will now turn to cases where both particles are true spherosemble computer simulation techniques. They also compared
cylinders. their results to calculations in the FOA. It is important to
realize that computer simulations measure binodals, which
2. Equally thin spherocylinders mixture are the equivalent of the phase coexistence curves. Con-
The case wherer,=o,=1 andL,#0,L,#0 is also a vgrsely, the theories we discuss here predict s.pin_odal curves.
case where the present theory does not predict demixing 8 1S clear that the spinodal curves should be inside the cor-
all. Again, we first look at the solutions,(x) atx=0 and 1, responding binodal. The system simulated in Réf.is for

which we find to be negative: the parameters; /o,=0.1 andL =L ;=L = 150,. With our
convention ¢;=1), this is equivalent too,=10 andL
-12 -12 =150. In Fig. 5, we plot the spinodals corresponding to the

ps(0)= m ps(1)= m (313 present theory, together with those of the C_)nsager type theo-
ries and the binodals from the computer simulations. For an
In addition, we find that the denominators of Eg2) for x  easier comparison, we have taken the same units as in Ref.
=0,1 do not change sign, and similarly for their derivatives:[6], that is p*=pb and p*=Pbo,/(kgT), where b
5 2 = m/4L2. We first notice that there is an appreciable differ-
D(0)=m(3L1+4)(6L1+9L,+4), ence between the SVCOAdashed curvesand the FOA
(dotted curvel which is in fact the reference theory in Ref.
[10]. The density range at which demixing is predicted is
(31D  between 6<po3<0.32x10 4, and for such small densities
D'(0)=—37%(L1—L2)(16+5L,+6L,L,+29,+ 12Lf), that we expect that a second virial coefficient approach to be
a good approximation. However, we observe that this is
D'(1)=—37%(L1—L2)(16+5L,;+6L;L,+29 ,+ 12L§). clearly not the case. In fact therange over which the theo-

] . i _ . ries coincide is about€x<0.05. Surprisingly, it is the FOA
Therefore this case leads to nonphysical negative demixing,4¢ is closer to the results from the GADCF. As the orien-

densities in the entirerangef 0,1], and hence fails to predict ational spinodal is independent of théo— 0 limit in any
demixing for a mixture of thin liquid crystals. Itis difficultto ¢ the Onsager type approaches, the two curves for the spin-
see if this prediction is a feature of the Percus-Yevick naturg,qs| densities are identical. However, the corresponding
of the present theory, or if it a generic one. In view of the yressures differ, as the FOA neglects the spherical caps con-
fact that it is necessary to go to large size ratios in order tqjpytions in theB, in Eq. (25). The binodals that one would
find demixing for hard sphere mixtures, the present findingyssociate with these curves should be outside and broader in
seems to be in good agreement. The authors are not aware f{ane with one contact point with the corresponding spin-
any experimental evidence of entropic demixing in liquid o4a| curves; that would be the lower consolute critical point.

crystal mixtures in the isotropic phase, although it is NotReferencds] contained an example of both such curves for
impossible that energetically favored demixing could occury g sphere mixtures. As noted by Dijksfiél, the critical

We leave this point_ open for futurg verification, most pmb'composition predicted by the FO&;~0.2, is in rather close
ably by computer simulation techniques. agreement with that of the simulations. The GADCF predicts
a smaller critical compositiox,~0.14. Of the three theo-
ries, it is the FOA that predicts a critical pressure closest to
In the general case E(QR2) is of no help from an analyti- the simulation results. We note that the binodal from the
cal point of view, and it must be solved case by case numerisimulations is very broad. But in the absence of free energy
cally. We wish here to point out some of the general featurescalculations, it is not possible to predict the true shape of the

D(1)=7?(3L,+4)(6L5+9L,+4),

3. General case
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FIG. 5. The entropic demixing of a spherocylinder mixture of  FIG. 6. The entropic demixing of spherocylinder mixtures in the
equal lengthL=150 and different thicknessesr{=1 and o>, quasi Onsager limit¢;=1, o,=10, andL,=L,=10%. The line
=10). The densities in the upper panel afe=pgb, and the pres- symbols and units are used as in Fig. 5.
sures areg* =Pbao,/kgT [b:(w/4)L§al]. Full lines are for the
GADCEF, dotted lines for the SVCOA, and dashes for the FOA. Theratio [10]. The corresponding curves in Fig. 5 are then for
U shaped curves are the demixing spinodals, and the monotonicaliypfinitely long cylinders, as opposed to the two other theo-
decreasing curvegor increasingk) are orientational spinodals. The ries, and it is quite surprising to see that all three curves are
open cubes are the Gibbs ensemble demixing binodal from{&ef. quite close to each other. In order to further test the adequacy
and the filled dots for the orientational binodal are from the samepf the theories to fit the FOA, in Fig. 6 we plot the spinodal
reference. densities and pressures fer,=10, but with L;=L,=L

=10*. We observe that all three curves indeed merge as they
binodal associated with the GADCF for the present case. Ishould. In fact they have still some small differences that can
Ref. [6], binodals of the FOA{from their unpublished Ref. be observed for larger densities and pressures. They merge
[25]) were plotted, and these curves were below the binodabtally for L~10°. At L=10°, for example, the curves are
of the simulations. In view of this one might expect that thewell separated forx>0.3, and merge relatively well for
binodals of the GADCF might be above and closer to thesmallerx values. In view of these results, we conclude that
simulation results than the current spinodal. The comparithe agreement in Fig. 5 between the FOA and the simulations
sons of the orientational spinodals are easier, as the isotropiseems fortuitous.
nematic transition is weakly first order. Hence we expect the The influence of the cylinder length of the critical point
spinodal to lie closer to the binodal in this case. Howeverwas also studied in Ref6], namely, whenL/o, varies at
this is not the case for the Onsager theory, which predicts fixed o,=10. The comparison with the GADCF in Fig. 7
large density gagl]. In general the orientational spinodal shows that, a4 /o, becomes smaller, the discrepancies in
from the GADCEF is closer to the simulation results than thethe spinodal increase in a dramatical fashion. The theory
two others. However, in Ref6], the binodals associated indicate that the critical points move to higher pressures and
with the FOA are again below but quite close to that fromlower compositions, whereas the simulations show no
the simulations. We observe that the geometrical theorghange at all in the position of the critical points. This strong
strongly underestimates the isotropic-nematic spinodal fotliscrepancy certainly deserves further investigation. It seems
the pure solute X=1), a feature that was already noticed that the predictions of the GADCF are more natural, as
[15]. shorter particles will push the demixing toward lower com-

In order to test the degree of convergence of the thre@osition regions and higher pressures and packing fractions.
theories, in Fig. 6 we consider the case of very long spheroEventually, for even shorter spherocylinders, the demixing
cylinders. We note that the FOA is independent of the indi-will disappear, as it will occur only at unphysically high
vidual cylinder lengthd ; andL,, and depend only on their pressures and densities. Hence one would also expect the
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FIG. 7. The entropic demixing of equal length spherocylinders Ll i el
mixtures of different cylinder lengthso(=1, 0,=10, andL=L, 0
=L,). The lines are for the GADCRtopmost curve forL =30, 0 0.02 004  0.06 0.08 0.1
middle curvel =80, and lower curve for =150. The dotted line is X

for the FOA. The symbols are Gibbs ensemble simulations binodals : o . -
. FIG. 8. The entropic demixing of model TMV in a liquid crys-
from Ref. [6] (open dotsL=30, filled dotsL =80, and stard P 9 9 y

) o tal. The parameters are the same as in F{g).Z'he line symbols
=150). The units are as in Fig. 5.

and units are as in Fig. 5.

critical point to follow a similar trend. The simulations how- . . . . .
ever agree with the GADCF only in that they both predict ath"ee dimensions is very peculiar as it has no excluded vol-
narrowing of the spinodals and binodals with decreasing cylYMe: thus it can be packed to infinitely high densities. Hence

inder lengths. The FOA is shown by a single dotted curveS“Ch a fluid will never order as it behaves as a fluid of non-

and is seen to be independentldfr,. Interacting ideal particles. However, when a particle is added

For the case of unequal cylinder lengths, we considef® it there will be an excluded volume between the two
again the TMV example of Sec. lllA. There is a possib|epomponents. Because of the geometnc_al simplicity of the
demixing in this mixture that occurs at very small isotropic Nteractions, this case can also be described by the GADCF.

TMV compositions. This is shown in Fig. 8, where the threeThe fundamental measures of the needle are reduced to the

theories are compared for both the spinodal densities anf@®an radius, which from Eq26) is Ry,= L/4, wherelL is the
pressures. The trends are very much similar to those og€Ndth of the needle. We see from H34) that the second

served in Fig. 5. The GADCF has the narrowest Spinoda]/irial_coefficient Qf t_he peedle is zero, and that _the DCF is
curve and the highest critical pressure. We also note thanentlcaIIy zero, indicating the totgl absence of interactions
despite the quite long cylinder length of the TMV, the On- Pétween needles. The other partial DCEs and cy, are
sager regime is clearly not reached. In view of what is found°nz€ro, and the needle will contribute to their GADCF
here and what was described in Sec. IllB 1, we conjecturdrough the mean radii only. L , _ ,
that entropic demixing is more likely to be observable when_ W€ can thus calculate the demixing spinodal line using
a nonorienting fluid is added to a liquid crystalline solvent.Ed- (22). The results are shown in Fig. 9 fon=L,=150

In such a case, the orientational spinodal can be suppressedfdo2=10. The general trends are again quite similar to that
the solute shape is close to spherical. If both fluids are liqui@PServed for both Figs. 5 and Fig. 6. We note that the critical
crystalline materials, then demixing could occur only in aSPherocylinder compositions found by the GADCF and FOA
very narrow low composition window for the larger mol- &€ in narrow agreement with the simulations results, tha:t.IS
ecules. This needs to be confronted with experiments, an¥~0-11. This value cannot be reached through second virial
eventually computer simulations. poefﬂment only. We also note that the orientational spinodal
is somewhat closer to that of the GADCF.

A particular case of this type of mixture was also studied
by Gibbs ensemble techniques, namely, the mixture of hard
The case of spherocylinders immersed in a fluid of hardods and spherd®6]. In this case a very simple approxima-
needles was also investigated by Dijkstra and van R&Jij tion for the free energy, that was built from the Carhanan-
using Gibbs ensemble techniques. The hard needle fluid iStarling free energy together with the Onsager approxima-

C. A very particular case: Spherocylinders in needles
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A VA R B L A e I [V hard spheres mixturg®7] are possible, we are not aware of
Mo a similar situation for nonspherical particles.
8 The main testing ground remains computer simulations,
which pose formidable challenges when the size ratios are
very large. The few comparisons between theory and simu-
lations shown in the present work indicate a convincing
agreement between theoretical spinodals and experimental
binodals. However, these simulations are done for situations
tailored to fit the Onsager limits, in order to test theories built
2 at that level of approximation. It is not the most desirable test
for the GADCF, which we believe should be more accurate,
particularly for particles with moderate aspect ratios. The
theoretical considerations from Ré¢26], that are somewhat
closer to the GADCEF, indicate that the latter should provide
. a better ground for predicting entropic demixing.
T 1 The GADCEF fails to predict entropic demixing in three
y cases, namely, for hard sphere mixtures, for the more general
case of spherocylinders immersed in a solvent of smaller
spheres, and finally for equally thin spherocylinders. From
what is known for hard spheres, the second case should be a
candidate for entropic demixing, and the failure of the
GADCEF here reveals the PY nature of the theory. On the
other hand, it would certainly be worth testing the prediction
ol of integral equations, including the PY approximation, con-
0 0.2 0.4 0.6 0.8 cerning entropic demixing in nonspherical hard particles. It
X is known that the PY theory predicts entropic demixing for
eoositive nonadditive diametef28]. In this respect, if one
considers a mixture of nonspherical particles as effective
spherical particles, the corresponding effective diameters
will most likely be larger than the smaller size of the par-

tion for the needles, was shown to predict binodals in veryicles. Thus, in the absence of ordering tendencies, which
good agreement with that from the simulations. As a freg€ans when particles are locally disordered, one might ap-
energy is built in the GADCF, we also expect to see similaProximate the interactions as nonadditive hard sphere inter-
agreement, particularly in view of the proximity of the &ctions. On this basis, one would then expect the PY theory
GADCF spinodal to the binodals from the simulations. {0 predict entropic demixing for such mixtures, and it might
also explain the results that are found herein for the GADCF.
Such an argument, however, does not account for the demix-
ing that is found when both fluids are ordering ones, as most
In this work, we have presented an application to mixtureof the nearest neighbor contacts are truly additive in this
of the geometrical approximation for the direct correlationcase.
functions derived in our previous wofld5]. Although we Finally, in view of the fact that the GADCF is PY like, it
did not compare the DCF itself to other theoretical ap-is quite probable that the boundaries of the demixing regions
proaches, namely, to integral equations results we showeithat are predicted from this theory are most likely conserva-
that the SPT pressure, that is consistent with the GADCF, itive predictions. If demixing shoud occur, it will probably
in quite good agreement with Monte Carlo simulation re-occur within the range of parameters predicted by the
sults, for the case of a mixture of hard spheres and shoGADCF, and even at lower values. In this sense we can
spherocylinders. The GADCF was essentially used to showrgue that the demixing densities predicted by the GADCEF,
that entropically driven phase separation could occur in dor a fixed set of molecular parameter, are most likely upper
variety of mixtures of spherocylindrical particles. It was con-bounds to that can be deduced from more complatea
cluded that a mixture of liquid crystalline materials and largediagrammatic seng¢heories. This argument is supported by
solutes is the most favored candidate. Our analysis showsigs. 5 and 9 in particular, where on sees that spinodals from
that a sufficiently large solute can preempt the orientationathe GADCF are well above the binodals from the simula-
ordering of the solvent over a notable solute compositiortions.
range, for the case where the solute is a nonordering fluid. Considering future investigations, it would be interesting
This type of mixture is frequently encountered in experimen-to test the present theory for other convex body mixtures. In
tal situations, but thethermaldemixing condition that we particular, entropic effects in mixing platelike particles, cut-
describe here is a more demanding condition. Such conditiospheres for example, and spherical or rodlike particles must
are generally met in colloidal liquid crystals. Although somebe quite different. It would also be interesting to analyze the
experiments on silica particles that illustrate demixing ofinfluence of the shapes. In this respect, it would be of impor-
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FIG. 9. The entropic demixing of a spherocylinder and a needl|
mixture. The symbols are the from Ré¢6]. All the symbols and
units are as in Fig. 5.

IV. CONCLUSION
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tance to extend the GADCF into ordered phases, so that the 1
influence of entropic effects on the ordering can be also ac- Xe= 3" (A1)
counted for. On this subject also, only second virial coeffi- 1to

cient theories were provided in recent yef26,30. A first ) ” L
elementary step in this direction would be to calculate thel "€ corresponding consolute critical density is given by

entropic effects in rigidly ordered fluids. Preliminary inves- 3, 5 o 3
tigations indicate that entropic driven demixing can also de- p :6(1+U)[8‘7 (0°—ot+DH+(A+0)(1+o )\/"—]
stabilize such types of mixtures. ¢ 7o (o—1)%(0%+ 803+ 3002 +80+1) '

(A2)
APPENDIX: ADDITIVE HARD SPHERE DEMIXING o )
IN THE SECOND VIRIAL In order to have a fluid mixture, that is, whep<0.5, one
COEFFICIENT APPROXIMATION needs at least the conditier=2.95. Fore=5 and a packing

- o o _ of small spheres of;=0.3, the minimal large sphere pack-
The additive hard sphere virial coefﬂmgnt is for rr-nxturesing fraction for demixing isy,_~0.015, which is seen to be
B2.ap=7/12(c,+ o). At the lowest density expansion ap- quite small, when compared to values obtained from integral
proximation one hax)%(k=0)=—2B,.,5, and this ex- equations(see Sec.)l This demixing tendency at the SV-
pression can be inserted into E@.8) in order to find the COA level of approximation is stronger than for any other
spinodal density. Surprisingly, the correspondipgis a  integral equations. It is quite interesting to see that the PY
positive function in the whole interval of[0,1], unlike the theory that has the corre&;, is incapable of producing a
PY case for which it is negativiesee Eq(28)]. It is possible  demixing. Coussaert and Ba{i5] found that it was neces-
to compute the critical composition of the large sphévath sary to include up to a fifth virial coefficient in the PY equa-
diametero) by calculating the single minima ofy(x) in this  tion of state to trigger demixing, which, however, was now

x interval. This critical value is found to occur at all size ratios.
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